Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 10/2016

01-10-2016 | Retinal Disorders

Congenital stationary night blindness with hypoplastic discs, negative electroretinogram and thinning of the inner nuclear layer

Authors: Abdulaziz Abdulrahman Al Oreany, Abdulaziz Al Hadlaq, Patrik Schatz

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 10/2016

Login to get access

Abstract

Purpose

To describe congenital stationary night blindness (CSNB) with negative electroretinogram, hypoplastic discs, nystagmus and thinning of the inner nuclear layer (INL).

Methods

Retinal structure was analyzed qualitatively with spectral domain optical coherence tomography and wide field imaging. Retinal function was evaluated with full-field electroretinography (ffERG). Molecular genetic testing included next-generation sequencing (NGS) of the known genes involved in CSNB.

Results

Patients presented with CSNB presented with nystagmus, high myopia, hypoplastic discs and negative ffERG with no measurable rod response. The retinas appeared normal and automated segmentation of retinal layers demonstrated a relative reduction of thickness of the INL. There was no significant change in the ffERG after prolonged 2 hour dark adaptation compared to standard 30 minute dark adaptation. Affected family members harboured the homozygous 1-bp deletion c.2394delC in exon 18 of the TRPM1 gene, whereas their unaffected parents were heterozygous carriers.

Conclusions

This data expands the genotype and phenotype spectrum of CSNB. The lack of improvement of rod responses after prolonged dark adaptation, together with thinning of the INL, is compatible with postreceptoral transmission dysfunction in the bipolar cells. Such knowledge may prove useful in future development of treatment for outer retinal dystrophies, using opsin genes to restore light responses in survivor neurons in the inner retina.
Literature
1.
go back to reference Zeitz C, Robson AG, Audo I (2015) Congenital stationary night blindness: an analysis and update of genotype-phenotype correlations and pathogenic mechanisms. Prog Retin Eye Res 45:58–110CrossRefPubMed Zeitz C, Robson AG, Audo I (2015) Congenital stationary night blindness: an analysis and update of genotype-phenotype correlations and pathogenic mechanisms. Prog Retin Eye Res 45:58–110CrossRefPubMed
2.
go back to reference Zeitz C, Forster U, Neidhardt J et al (2007) Night blindness-associated mutations in the ligand-binding, cysteine-rich, and intracellular domains of the metabotropic glutamate receptor 6 abolish protein trafficking. Hum Mutat 28:771–780CrossRefPubMed Zeitz C, Forster U, Neidhardt J et al (2007) Night blindness-associated mutations in the ligand-binding, cysteine-rich, and intracellular domains of the metabotropic glutamate receptor 6 abolish protein trafficking. Hum Mutat 28:771–780CrossRefPubMed
3.
go back to reference Schatz P, Preising M, Lorenz B et al (2010) Lack of autofluorescence in fundus albipunctatus associated with mutations in RDH5. Retina 30:1704–1713CrossRefPubMed Schatz P, Preising M, Lorenz B et al (2010) Lack of autofluorescence in fundus albipunctatus associated with mutations in RDH5. Retina 30:1704–1713CrossRefPubMed
4.
go back to reference Skorczyk-Werner A, Kocięcki J, Wawrocka A et al (2015) The first case of Oguchi disease, type 2 in a Polish patient with confirmed GRK1 gene mutation. Klin Ocz 117:27–30 Skorczyk-Werner A, Kocięcki J, Wawrocka A et al (2015) The first case of Oguchi disease, type 2 in a Polish patient with confirmed GRK1 gene mutation. Klin Ocz 117:27–30
5.
go back to reference Bijveld MM, Florijn RJ, Bergen AA et al (2013) Genotype and phenotype of 101 Dutch patients with congenital stationary night blindness. Ophthalmology 120:2072–2081CrossRefPubMed Bijveld MM, Florijn RJ, Bergen AA et al (2013) Genotype and phenotype of 101 Dutch patients with congenital stationary night blindness. Ophthalmology 120:2072–2081CrossRefPubMed
6.
go back to reference Marmor MF, Zrenner E (1999) Standard for clinical electroretinography. Doc Ophthalmol 97:143–156CrossRef Marmor MF, Zrenner E (1999) Standard for clinical electroretinography. Doc Ophthalmol 97:143–156CrossRef
7.
go back to reference Audo I, Kohl S, Leroy BP et al (2009) TRPM1 is mutated in patients with autosomai-recessive complete congenital stationary night blindness. Am J Hum Genet 85:720–729CrossRefPubMedPubMedCentral Audo I, Kohl S, Leroy BP et al (2009) TRPM1 is mutated in patients with autosomai-recessive complete congenital stationary night blindness. Am J Hum Genet 85:720–729CrossRefPubMedPubMedCentral
8.
9.
go back to reference Dryja TP, McGee TL, Berson EL et al (2005) Night blindness and abnormal coneelectroretinogram ON responses in patients with mutations in the GRM6 gene encoding mGluR6. Proc Natl Acad Sci U S A 102:4884–4889CrossRefPubMedPubMedCentral Dryja TP, McGee TL, Berson EL et al (2005) Night blindness and abnormal coneelectroretinogram ON responses in patients with mutations in the GRM6 gene encoding mGluR6. Proc Natl Acad Sci U S A 102:4884–4889CrossRefPubMedPubMedCentral
10.
go back to reference Bech-Hansen NT, Naylor MJ, Maybaum TA et al (2000) Mutations in NYX, encoding theleucine-rich proteoglycan nyctalopin, cause X-linked complete congenitalstationary night blindness. Nat Genet 26:319–323CrossRefPubMed Bech-Hansen NT, Naylor MJ, Maybaum TA et al (2000) Mutations in NYX, encoding theleucine-rich proteoglycan nyctalopin, cause X-linked complete congenitalstationary night blindness. Nat Genet 26:319–323CrossRefPubMed
11.
go back to reference Audo I, Bujakowska K, Orhan E et al (2012) Whole-exome sequencing identifies mutations in GPR179 leading toautosomal-recessive complete congenital stationary night blindness. Am J Hum Genet 90:321–330CrossRefPubMedPubMedCentral Audo I, Bujakowska K, Orhan E et al (2012) Whole-exome sequencing identifies mutations in GPR179 leading toautosomal-recessive complete congenital stationary night blindness. Am J Hum Genet 90:321–330CrossRefPubMedPubMedCentral
12.
go back to reference Zeitz C, Jacobson SG, Hamel CP et al (2013) Whole-exome sequencing identifies LRIT3 mutations as a cause of autosomal-recessive complete congenitalstationary night blindness. Am J Hum Genet 92:67–75CrossRefPubMedPubMedCentral Zeitz C, Jacobson SG, Hamel CP et al (2013) Whole-exome sequencing identifies LRIT3 mutations as a cause of autosomal-recessive complete congenitalstationary night blindness. Am J Hum Genet 92:67–75CrossRefPubMedPubMedCentral
13.
go back to reference Morgans CW, Ren G, Akileswaran L (2006) Localization of nyctalopin in the mammalian retina. Eur J Neurosci 23:1163–1171CrossRefPubMed Morgans CW, Ren G, Akileswaran L (2006) Localization of nyctalopin in the mammalian retina. Eur J Neurosci 23:1163–1171CrossRefPubMed
14.
go back to reference Godara P, Cooper RF, Sergouniotis PI et al (2012) Assessing retinal structure in complete congenital stationary night blindness and Oguchi disease. Am J Ophthalmol 154:987–1001CrossRefPubMedPubMedCentral Godara P, Cooper RF, Sergouniotis PI et al (2012) Assessing retinal structure in complete congenital stationary night blindness and Oguchi disease. Am J Ophthalmol 154:987–1001CrossRefPubMedPubMedCentral
15.
go back to reference Stone J, Maslim J, Rapaport D (1984) The development of the topographical organization of the cat’s retina. In: Stone J, Breher B, Rapaport DH (eds) Development of visual pathways in mammals. Alan R. Liss, New York Stone J, Maslim J, Rapaport D (1984) The development of the topographical organization of the cat’s retina. In: Stone J, Breher B, Rapaport DH (eds) Development of visual pathways in mammals. Alan R. Liss, New York
16.
go back to reference Nishimura Y, Rakic P (1987) Synaptogenesis in the primate retina proceeds from the ganglion cells towards the photoreceptors. Neurosci Res Suppl 6:253–268CrossRef Nishimura Y, Rakic P (1987) Synaptogenesis in the primate retina proceeds from the ganglion cells towards the photoreceptors. Neurosci Res Suppl 6:253–268CrossRef
Metadata
Title
Congenital stationary night blindness with hypoplastic discs, negative electroretinogram and thinning of the inner nuclear layer
Authors
Abdulaziz Abdulrahman Al Oreany
Abdulaziz Al Hadlaq
Patrik Schatz
Publication date
01-10-2016
Publisher
Springer Berlin Heidelberg
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 10/2016
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-016-3346-6

Other articles of this Issue 10/2016

Graefe's Archive for Clinical and Experimental Ophthalmology 10/2016 Go to the issue