Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 6/2016

01-06-2016 | Oncology

A pilot study to image the vascular network of small melanocytic choroidal tumors with speckle noise-free 1050-nm swept source optical coherence tomography (OCT choroidal angiography)

Authors: Peter Maloca, Cyrill Gyger, Pascal W. Hasler

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 6/2016

Login to get access

Abstract

Purpose

To visualize and measure the vascular network of melanocytic choroidal tumors with speckle noise-free swept source optical coherence tomography (SS-OCT choroidal angiography).

Methods

Melanocytic choroidal tumors from 24 eyes were imaged with 1050-nm optical coherence tomography (Topcon DRI OCT-1 Atlantis). A semi-automated algorithm was developed to remove speckle noise and to extract and measure the volume of the choroidal vessels from the obtained OCT data.

Results

In all cases, analysis of the choroidal vessels could be performed with SS-OCT without the need for pupillary dilation. The proposed method allows speckle noise-free, structure-guided visualization and measurement of the larger choroidal vessels in three dimensions. The obtained data suggest that speckle noise-free OCT may be more effective at identifying choroidal structures than traditional OCT methods. The measured volume of the extracted choroidal vessels of Haller’s layer and Sattler’s layer in the examined tumorous eyes was on average 0.982463955 mm3 /982463956 μm3 (range of 0.209764406 mm3 /209764405.9 μm3to 1.78105544 mm3 /1781055440 μm3). Full thickness obstruction of the choroidal vasculature by the tumor was found in 18 cases (72 %). In seven cases (18 %), choroidal vessel architecture did not show pronounced morphological abnormalities (18 %).

Conclusion

Speckle noise-free OCT may serve as a new illustrative imaging technology and enhance visualization of the choroidal vessels without the need for dye injection. OCT can be used to identify and evaluate the choroidal vessels of melanocytic choroidal tumors, and may represent a potentially useful tool for imaging and monitoring of choroidal nevi and melanoma.
Literature
1.
go back to reference Augsburger JJ, Corrêa ZM, Trichopoulos N, Shaikh A (2008) Size overlap between benign melanocytic choroidal nevi and choroidal malignant melanomas. Invest Ophthalmol Vis Sci 49(7):2823–8CrossRefPubMed Augsburger JJ, Corrêa ZM, Trichopoulos N, Shaikh A (2008) Size overlap between benign melanocytic choroidal nevi and choroidal malignant melanomas. Invest Ophthalmol Vis Sci 49(7):2823–8CrossRefPubMed
2.
go back to reference McLaughlin CC, Wu XC, Jemal A, Martin HJ, Roche LM, Chen VW (2005) Incidence of noncutaneous melanomas in the US. Cancer 103(5):1000–1007CrossRefPubMed McLaughlin CC, Wu XC, Jemal A, Martin HJ, Roche LM, Chen VW (2005) Incidence of noncutaneous melanomas in the US. Cancer 103(5):1000–1007CrossRefPubMed
3.
go back to reference Jovanovic P, Mihajlovic M, Djordjevic-Jocic J et al (2013) Ocular melanoma: an overview of the current status. Int J Clin Exp Pathol 6(7):1230–1244PubMedPubMedCentral Jovanovic P, Mihajlovic M, Djordjevic-Jocic J et al (2013) Ocular melanoma: an overview of the current status. Int J Clin Exp Pathol 6(7):1230–1244PubMedPubMedCentral
4.
go back to reference Kujala E, Mäkitie T, Kivelä T (2003) Very long-term prognosis of patients with malignant uveal melanoma. Invest Ophthalmol Vis Sci 44(11):4651–4659CrossRefPubMed Kujala E, Mäkitie T, Kivelä T (2003) Very long-term prognosis of patients with malignant uveal melanoma. Invest Ophthalmol Vis Sci 44(11):4651–4659CrossRefPubMed
5.
go back to reference Doro D, Kotsafti O, Cimatti P (2013) Long-term echographic surveillance of elevated choroidal nevi. Am J Ophthalmol 156(3):438–443CrossRefPubMed Doro D, Kotsafti O, Cimatti P (2013) Long-term echographic surveillance of elevated choroidal nevi. Am J Ophthalmol 156(3):438–443CrossRefPubMed
7.
go back to reference Shields CL, Materin MA, Shields JA (2005) Review of optical coherence tomography for intraocular tumors. Curr Opin Ophthalmol 16(3):141–154CrossRefPubMed Shields CL, Materin MA, Shields JA (2005) Review of optical coherence tomography for intraocular tumors. Curr Opin Ophthalmol 16(3):141–154CrossRefPubMed
8.
go back to reference Natesh S, Chin KJ, Finger PT (2010) Choroidal metastases fundus autofluorescence imaging: correlation to clinical, OCT, and fluorescein angiographic findings. Ophthalmic Surg Lasers Imaging 41(4):406–412CrossRefPubMed Natesh S, Chin KJ, Finger PT (2010) Choroidal metastases fundus autofluorescence imaging: correlation to clinical, OCT, and fluorescein angiographic findings. Ophthalmic Surg Lasers Imaging 41(4):406–412CrossRefPubMed
9.
go back to reference Sayanagi K, Pelayes DE, Kaiser PK, Singh AD (2011) 3D spectral domain optical coherence tomography findings in choroidal tumors. Eur J Ophthalmol 21(3):271–275CrossRefPubMed Sayanagi K, Pelayes DE, Kaiser PK, Singh AD (2011) 3D spectral domain optical coherence tomography findings in choroidal tumors. Eur J Ophthalmol 21(3):271–275CrossRefPubMed
10.
go back to reference Schaudig U, Hassenstein A, Bernd A, Walter A, Richard G (1998) Limitations of imaging choroidal tumors in vivo by optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 236(8):588–592CrossRefPubMed Schaudig U, Hassenstein A, Bernd A, Walter A, Richard G (1998) Limitations of imaging choroidal tumors in vivo by optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 236(8):588–592CrossRefPubMed
11.
go back to reference Asrani S, Essaid L, Alder BD, Santiago-Turla C (2014) Artifacts in spectral-domain optical coherence tomography measurements in glaucoma. JAMA Ophthalmol 132(4):396–402CrossRefPubMed Asrani S, Essaid L, Alder BD, Santiago-Turla C (2014) Artifacts in spectral-domain optical coherence tomography measurements in glaucoma. JAMA Ophthalmol 132(4):396–402CrossRefPubMed
12.
go back to reference Mansouri K, Medeiros FA, Tatham AJ, Marchase N, Weinreb RN (2014) Evaluation of retinal and choroidal thickness by swept-source optical coherence tomography: repeatability and assessment of artifacts. Am J Ophthalmol 157(5):1022–1032CrossRefPubMed Mansouri K, Medeiros FA, Tatham AJ, Marchase N, Weinreb RN (2014) Evaluation of retinal and choroidal thickness by swept-source optical coherence tomography: repeatability and assessment of artifacts. Am J Ophthalmol 157(5):1022–1032CrossRefPubMed
14.
go back to reference Shields CL, Kaliki S, Rojanaporn D, Ferenczy SR, Shields JA (2012) Enhanced depth imaging optical coherence tomography of small choroidal melanoma: Comparison with choroidal nevus. Arch Ophthalmol 130(7):850–856CrossRefPubMed Shields CL, Kaliki S, Rojanaporn D, Ferenczy SR, Shields JA (2012) Enhanced depth imaging optical coherence tomography of small choroidal melanoma: Comparison with choroidal nevus. Arch Ophthalmol 130(7):850–856CrossRefPubMed
15.
go back to reference Alonso-Caneiro D, Read SA, Collins MJ (2013) Automatic segmentation of choroidal thickness in optical coherence tomography. Biomed Opt Express 4(12):2795–2812CrossRefPubMedPubMedCentral Alonso-Caneiro D, Read SA, Collins MJ (2013) Automatic segmentation of choroidal thickness in optical coherence tomography. Biomed Opt Express 4(12):2795–2812CrossRefPubMedPubMedCentral
16.
go back to reference Kajić V, Esmaeelpour M, Považay B, Marshall D, Rosin PL, Drexler W (2012) Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model. Biomed Opt Express 3(1):86–103CrossRefPubMedPubMedCentral Kajić V, Esmaeelpour M, Považay B, Marshall D, Rosin PL, Drexler W (2012) Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model. Biomed Opt Express 3(1):86–103CrossRefPubMedPubMedCentral
17.
go back to reference Kajić V, Esmaeelpour M, Glittenberg C et al (2013) Automated three-dimensional choroidal vessel segmentation of 3D 1060 nm OCT retinal data. Biomed Opt Express 4(1):134–50CrossRefPubMedPubMedCentral Kajić V, Esmaeelpour M, Glittenberg C et al (2013) Automated three-dimensional choroidal vessel segmentation of 3D 1060 nm OCT retinal data. Biomed Opt Express 4(1):134–50CrossRefPubMedPubMedCentral
19.
go back to reference Maloca P, Gyger C, Hasler WP (2015) Ultra-short-term reproducibility of speckle-noise freed fluid and tissue compartmentalization of the choroid analyzed by standard spectral OCT. Transl Vis Sci Technol 4(6):3PubMedPubMedCentral Maloca P, Gyger C, Hasler WP (2015) Ultra-short-term reproducibility of speckle-noise freed fluid and tissue compartmentalization of the choroid analyzed by standard spectral OCT. Transl Vis Sci Technol 4(6):3PubMedPubMedCentral
20.
go back to reference Girard MJ, Strouthidis NG, Ethier CR, Mari JM (2011) Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head. Invest Ophthalmol Vis Sci 52(10):7738–48CrossRefPubMed Girard MJ, Strouthidis NG, Ethier CR, Mari JM (2011) Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head. Invest Ophthalmol Vis Sci 52(10):7738–48CrossRefPubMed
22.
go back to reference Pizer SM, Amburn EP, Austin JD et al (1987) Adaptive histogram equalization and its variations. Comput Vision Graph 39:355–368CrossRef Pizer SM, Amburn EP, Austin JD et al (1987) Adaptive histogram equalization and its variations. Comput Vision Graph 39:355–368CrossRef
24.
go back to reference Basdekidou C, Wolff B, Vasseur V, Mer YL, Sahel JA (2011) Flat choroidal nevus inaccessible to ultrasound sonography evaluated by enhanced depth imaging optical coherence tomography. Case Rep Ophthalmol 2(2):185–188CrossRefPubMedPubMedCentral Basdekidou C, Wolff B, Vasseur V, Mer YL, Sahel JA (2011) Flat choroidal nevus inaccessible to ultrasound sonography evaluated by enhanced depth imaging optical coherence tomography. Case Rep Ophthalmol 2(2):185–188CrossRefPubMedPubMedCentral
25.
go back to reference Shields CL, Mashayekhi A, Materin MA et al (2005) Optical coherence tomography of choroidal nevus in 120 patients. Retina 25(3):243–252CrossRefPubMed Shields CL, Mashayekhi A, Materin MA et al (2005) Optical coherence tomography of choroidal nevus in 120 patients. Retina 25(3):243–252CrossRefPubMed
26.
go back to reference Say EA, Shah SU, Ferenczy S, Shields CL (2012) Optical coherence tomography of retinal and choroidal tumors. J Ophthalmol 2012:385058PubMedPubMedCentral Say EA, Shah SU, Ferenczy S, Shields CL (2012) Optical coherence tomography of retinal and choroidal tumors. J Ophthalmol 2012:385058PubMedPubMedCentral
Metadata
Title
A pilot study to image the vascular network of small melanocytic choroidal tumors with speckle noise-free 1050-nm swept source optical coherence tomography (OCT choroidal angiography)
Authors
Peter Maloca
Cyrill Gyger
Pascal W. Hasler
Publication date
01-06-2016
Publisher
Springer Berlin Heidelberg
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 6/2016
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-015-3259-9

Other articles of this Issue 6/2016

Graefe's Archive for Clinical and Experimental Ophthalmology 6/2016 Go to the issue