Skip to main content
Top
Published in: Journal of Neurology 1/2018

01-10-2018 | Original Communication

Neuronal network-based mathematical modeling of perceived verticality in acute unilateral vestibular lesions: from nerve to thalamus and cortex

Authors: S. Glasauer, M. Dieterich, T. Brandt

Published in: Journal of Neurology | Special Issue 1/2018

Login to get access

Abstract

Acute unilateral lesions of vestibular graviceptive pathways from the otolith organs and semicircular canals via vestibular nuclei and the thalamus to the parieto-insular vestibular cortex regularly cause deviations of perceived verticality in the frontal roll plane. These tilts are ipsilateral in peripheral and in ponto-medullary lesions and contralateral in ponto-mesencephalic lesions. Unilateral lesions of the vestibular thalamus or cortex cause smaller tilts of the perceived vertical, which may be either ipsilateral or contralateral. Using a neural network model, we previously explained why unilateral vestibular midbrain lesions rarely manifest with rotational vertigo. We here extend this approach, focussing on the direction-specific deviations of perceived verticality in the roll plane caused by acute unilateral vestibular lesions from the labyrinth to the cortex. Traditionally, the effect of unilateral peripheral lesions on perceived verticality has been attributed to a lesion-based bias of the otolith system. We here suggest, on the basis of a comparison of model simulations with patient data, that perceived visual tilt after peripheral lesions is caused by the effect of a torsional semicircular canal bias on the central gravity estimator. We further argue that the change of gravity coding from a peripheral/brainstem vectorial representation in otolith coordinates to a distributed population coding at thalamic and cortical levels can explain why unilateral thalamic and cortical lesions have a variable effect on perceived verticality. Finally, we propose how the population-coding network for gravity direction might implement the elements required for the well-known perceptual underestimation of the subjective visual vertical in tilted body positions.
Appendix
Available only for authorised users
Literature
1.
go back to reference Brandt T, Dieterich M (1994) Vestibular syndromes in the roll plane: topographic diagnosis from brainstem to cortex. Ann Neurol 36:337–347CrossRefPubMed Brandt T, Dieterich M (1994) Vestibular syndromes in the roll plane: topographic diagnosis from brainstem to cortex. Ann Neurol 36:337–347CrossRefPubMed
2.
go back to reference Baier B, Suchan J, Karnath HO, Dieterich M (2012) Neural correlates of disturbed perception of verticality. Neurology 78:728–735CrossRefPubMed Baier B, Suchan J, Karnath HO, Dieterich M (2012) Neural correlates of disturbed perception of verticality. Neurology 78:728–735CrossRefPubMed
3.
go back to reference Yang TH, Oh SY, Kwak K, Lee JM, Shin BS, Jeong SK (2014) Topology of brainstem lesions associated with subjective visual vertical tilt. Neurology 82:1968–1975CrossRefPubMed Yang TH, Oh SY, Kwak K, Lee JM, Shin BS, Jeong SK (2014) Topology of brainstem lesions associated with subjective visual vertical tilt. Neurology 82:1968–1975CrossRefPubMed
4.
go back to reference Westheimer G, Blair SM (1975) The ocular tilt reaction—a brainstem ocular motor routine. Investig Ophthalmol 14:833–839 Westheimer G, Blair SM (1975) The ocular tilt reaction—a brainstem ocular motor routine. Investig Ophthalmol 14:833–839
5.
go back to reference Westheimer G, Blair SM (1975) Synkinesis of head and eye movements evoked by brainstem stimulation in the alert monkey. Exp Brain Res 24:89–95CrossRefPubMed Westheimer G, Blair SM (1975) Synkinesis of head and eye movements evoked by brainstem stimulation in the alert monkey. Exp Brain Res 24:89–95CrossRefPubMed
6.
go back to reference Halmagyi GM, Brandt T, Dieterich M, Curthoys IS, Starck RJ, Hoyt WF (1990) Tonic contraversive ocular tilt reaction due to meso-diencephalic lesions. Neurology 40:1503–1509CrossRefPubMed Halmagyi GM, Brandt T, Dieterich M, Curthoys IS, Starck RJ, Hoyt WF (1990) Tonic contraversive ocular tilt reaction due to meso-diencephalic lesions. Neurology 40:1503–1509CrossRefPubMed
7.
go back to reference Friedmann G (1970) The judgement of the visual vertical and horizontal with peripheral and central vestibular lesions. Brain 93:313–328CrossRefPubMed Friedmann G (1970) The judgement of the visual vertical and horizontal with peripheral and central vestibular lesions. Brain 93:313–328CrossRefPubMed
8.
go back to reference Halmagyi GM, Gresty MA, Gibson WPR (1979) Ocular tilt reaction with peripheral vestibular lesions. Ann Neurol 6:80–83CrossRefPubMed Halmagyi GM, Gresty MA, Gibson WPR (1979) Ocular tilt reaction with peripheral vestibular lesions. Ann Neurol 6:80–83CrossRefPubMed
9.
go back to reference Böhmer A (1997) Zur Beurteilung der Otolithenfunktion mit der subjektiven visuellen Vertikalen. HNO 45:533–537CrossRefPubMed Böhmer A (1997) Zur Beurteilung der Otolithenfunktion mit der subjektiven visuellen Vertikalen. HNO 45:533–537CrossRefPubMed
10.
go back to reference Anastasopoulos D, Haslwanter T, Bronstein A, Fetter M, Dichgans J (1997) Dissociation between the perception of body verticality and the visual vertical in acute peripheral vestibular disorder in humans. Neurosci Lett 233:151–153CrossRefPubMed Anastasopoulos D, Haslwanter T, Bronstein A, Fetter M, Dichgans J (1997) Dissociation between the perception of body verticality and the visual vertical in acute peripheral vestibular disorder in humans. Neurosci Lett 233:151–153CrossRefPubMed
11.
go back to reference Dieterich M, Brandt T (1992) Wallenberg’s syndrome: lateropulsion, cyclorotation and subjective visual vertical in 36 patients. Ann Neurol 31:399–408CrossRefPubMed Dieterich M, Brandt T (1992) Wallenberg’s syndrome: lateropulsion, cyclorotation and subjective visual vertical in 36 patients. Ann Neurol 31:399–408CrossRefPubMed
12.
go back to reference Dieterich M, Brandt T (1993) Ocular torsion and tilt of subjective visual vertical are sensitive brainstem signs. Ann Neurol 33:292–299CrossRefPubMed Dieterich M, Brandt T (1993) Ocular torsion and tilt of subjective visual vertical are sensitive brainstem signs. Ann Neurol 33:292–299CrossRefPubMed
13.
go back to reference Brandt T, Dieterich M (1993) Skew deviation with ocular torsion, a vestibular brainstem sign of topographic diagnostic value. Ann Neurol 33:528–534CrossRefPubMed Brandt T, Dieterich M (1993) Skew deviation with ocular torsion, a vestibular brainstem sign of topographic diagnostic value. Ann Neurol 33:528–534CrossRefPubMed
14.
go back to reference Baier B, Thömke F, Wilting J, Heinze C, Geber C, Dieterich M (2012) A pathway in the brainstem for roll-tilt of the subjective visual vertical: evidence from a lesion-behavior mapping study. J Neurosci 32:14854–14858CrossRefPubMedPubMedCentral Baier B, Thömke F, Wilting J, Heinze C, Geber C, Dieterich M (2012) A pathway in the brainstem for roll-tilt of the subjective visual vertical: evidence from a lesion-behavior mapping study. J Neurosci 32:14854–14858CrossRefPubMedPubMedCentral
15.
go back to reference Dieterich M, Brandt T (1993) Thalamic infarctions: differential effects on vestibular function in the roll plane (35 patients). Neurology 43:1732–1740CrossRefPubMed Dieterich M, Brandt T (1993) Thalamic infarctions: differential effects on vestibular function in the roll plane (35 patients). Neurology 43:1732–1740CrossRefPubMed
16.
go back to reference Baier B, Conrad J, Stephan T, Kirsch V, Vogt T, Wilting J, Müller-Forell W, Dieterich M (2016) Vestibular thalamus: two distinct graviceptive pathways. Neurology 86:134–140CrossRefPubMed Baier B, Conrad J, Stephan T, Kirsch V, Vogt T, Wilting J, Müller-Forell W, Dieterich M (2016) Vestibular thalamus: two distinct graviceptive pathways. Neurology 86:134–140CrossRefPubMed
17.
go back to reference Elwischger K, Rommer P, Prayer D, Mueller C, Auff E, Wiest G (2012) Thalamic astasia from isolated centromedian thalamic infarction. Neurology 78:146–147CrossRefPubMed Elwischger K, Rommer P, Prayer D, Mueller C, Auff E, Wiest G (2012) Thalamic astasia from isolated centromedian thalamic infarction. Neurology 78:146–147CrossRefPubMed
18.
go back to reference Brandt T, Dieterich M, Danek A (1994) Vestibular cortex lesions affect the perception of verticality. Ann Neurol 35:403–412CrossRefPubMed Brandt T, Dieterich M, Danek A (1994) Vestibular cortex lesions affect the perception of verticality. Ann Neurol 35:403–412CrossRefPubMed
19.
go back to reference Dieterich M, Brandt T (2015) The bilateral central vestibular system: its pathways, functions, and disorders. Ann N Y Acad Sci 84:1–5 Dieterich M, Brandt T (2015) The bilateral central vestibular system: its pathways, functions, and disorders. Ann N Y Acad Sci 84:1–5
20.
go back to reference Kirsch V, Keeser D, Hergenroeder T, Erat O, Ertl-Wagner B, Brandt T, Dieterich M (2016) Structural and functional connectivity mapping of the vestibular circuitry from human brainstem to cortex. Brain Struct Funct 221:1291–1308CrossRefPubMed Kirsch V, Keeser D, Hergenroeder T, Erat O, Ertl-Wagner B, Brandt T, Dieterich M (2016) Structural and functional connectivity mapping of the vestibular circuitry from human brainstem to cortex. Brain Struct Funct 221:1291–1308CrossRefPubMed
22.
go back to reference Dieterich M, Glasauer S, Brandt T (2018) Why acute unilateral vestibular midbrain lesions rarely manifest with rotational vertigo: a clinical and modelling approach to head direction cell function. J Neurol 265:1184–1198CrossRefPubMedPubMedCentral Dieterich M, Glasauer S, Brandt T (2018) Why acute unilateral vestibular midbrain lesions rarely manifest with rotational vertigo: a clinical and modelling approach to head direction cell function. J Neurol 265:1184–1198CrossRefPubMedPubMedCentral
23.
25.
go back to reference Vibert D, Häusler R, Safran AB (1999) Subjective visual vertical in peripheral unilateral vestibular diseases. J Vestib Res 9:145–152PubMed Vibert D, Häusler R, Safran AB (1999) Subjective visual vertical in peripheral unilateral vestibular diseases. J Vestib Res 9:145–152PubMed
26.
go back to reference Böhmer A, Mast F, Jarchow T (1996) Can a unilateral loss of otolith function be clinically detected by assessment of the subjective visual vertical? Brain Res Bull 40:423–429CrossRefPubMed Böhmer A, Mast F, Jarchow T (1996) Can a unilateral loss of otolith function be clinically detected by assessment of the subjective visual vertical? Brain Res Bull 40:423–429CrossRefPubMed
27.
go back to reference Bisdorff AR, Wolsley CJ, Anastasopoulos D, Bronstein AM, Gresty MA (1996) The perception of body verticality (subjective postural vertical) in peripheral and central vestibular disorders. Brain 119:1523–1534CrossRefPubMed Bisdorff AR, Wolsley CJ, Anastasopoulos D, Bronstein AM, Gresty MA (1996) The perception of body verticality (subjective postural vertical) in peripheral and central vestibular disorders. Brain 119:1523–1534CrossRefPubMed
28.
go back to reference Zwergal A, Büttner-Ennever J, Brandt T, Strupp M (2008) An ipsilateral vestibulothalamic tract adjacent to the medial lemniscus in humans. Brain 131:2928–2935CrossRefPubMed Zwergal A, Büttner-Ennever J, Brandt T, Strupp M (2008) An ipsilateral vestibulothalamic tract adjacent to the medial lemniscus in humans. Brain 131:2928–2935CrossRefPubMed
29.
go back to reference Böhmer A, Rickenmann J (1995) The subjective visual vertical as a clinical parameter of vestibular function in peripheral vestibular diseases. J Vestib Res 5:33–45 Böhmer A, Rickenmann J (1995) The subjective visual vertical as a clinical parameter of vestibular function in peripheral vestibular diseases. J Vestib Res 5:33–45
30.
go back to reference Müller JA, Bockisch CJ, Tarnutzer AA (2016) Spatial orientation in patients with chronic unilateral vestibular hypofunction is ipsilesionally distorted. Clin Neurophysiol 127:3243–3251CrossRefPubMed Müller JA, Bockisch CJ, Tarnutzer AA (2016) Spatial orientation in patients with chronic unilateral vestibular hypofunction is ipsilesionally distorted. Clin Neurophysiol 127:3243–3251CrossRefPubMed
31.
go back to reference Glasauer S (1992) Interaction of semicircular canals and otoliths in the processing structure of the subjective zenith. Ann N Y Acad Sci 656:847–849CrossRefPubMed Glasauer S (1992) Interaction of semicircular canals and otoliths in the processing structure of the subjective zenith. Ann N Y Acad Sci 656:847–849CrossRefPubMed
32.
go back to reference Merfeld DM, Young LR, Oman CM, Shelhamer MJ (1993) A multidimensional model of the effect of gravity on the spatial orientation of the monkey. J Vestib Res 3:141–161PubMed Merfeld DM, Young LR, Oman CM, Shelhamer MJ (1993) A multidimensional model of the effect of gravity on the spatial orientation of the monkey. J Vestib Res 3:141–161PubMed
33.
go back to reference Glasauer S, Merfeld DM (1997) Modeling three dimensional vestibular responses during complex motion stimulation. In: Fetter M, Haslwanter T, Misslisch H, Tweed D (eds) Three-dimensional kinematic principles of eye-, head, and limb movements in health and disease. Harwood, Amsterdam, pp 387–398 Glasauer S, Merfeld DM (1997) Modeling three dimensional vestibular responses during complex motion stimulation. In: Fetter M, Haslwanter T, Misslisch H, Tweed D (eds) Three-dimensional kinematic principles of eye-, head, and limb movements in health and disease. Harwood, Amsterdam, pp 387–398
34.
go back to reference Bos JE, Bles W (2002) Theoretical considerations on canal–otolith interaction and an observer model. Biol Cybern 86:191–207CrossRefPubMed Bos JE, Bles W (2002) Theoretical considerations on canal–otolith interaction and an observer model. Biol Cybern 86:191–207CrossRefPubMed
35.
go back to reference Glasauer S, Brandt T (2007) Noncommutative updating of perceived self-orientation in three dimensions. J Neurophysiol 97:2958–2964CrossRefPubMed Glasauer S, Brandt T (2007) Noncommutative updating of perceived self-orientation in three dimensions. J Neurophysiol 97:2958–2964CrossRefPubMed
36.
go back to reference MacNeilage PR, Ganesan N, Angelaki DE (2008) Computational approaches to spatial orientation: from transfer functions to dynamic Bayesian inference. J Neurophysiol 100:2981–2996CrossRefPubMedPubMedCentral MacNeilage PR, Ganesan N, Angelaki DE (2008) Computational approaches to spatial orientation: from transfer functions to dynamic Bayesian inference. J Neurophysiol 100:2981–2996CrossRefPubMedPubMedCentral
37.
38.
go back to reference Cousins S, Kaski D, Cutfield N, Seemungal B, Golding JF, Gresty M, Glasauer S, Bronstein AM (2013) Vestibular perception following acute unilateral vestibular lesions. PLoS One 8:e61862CrossRefPubMedPubMedCentral Cousins S, Kaski D, Cutfield N, Seemungal B, Golding JF, Gresty M, Glasauer S, Bronstein AM (2013) Vestibular perception following acute unilateral vestibular lesions. PLoS One 8:e61862CrossRefPubMedPubMedCentral
39.
go back to reference Dai MJ, Curthoys IS, Halmagyi GM (1989) Linear acceleration perception in the roll plane before and after unilateral vestibular neurectomy. Exp Brain Res 77:315–328CrossRefPubMed Dai MJ, Curthoys IS, Halmagyi GM (1989) Linear acceleration perception in the roll plane before and after unilateral vestibular neurectomy. Exp Brain Res 77:315–328CrossRefPubMed
40.
go back to reference Mayne R (1974) A systems concept of the vestibular organs. In: Kornhuber HH (ed) Handbook of sensory physiology, vol VI. Vestibular system Part 2: psychophysics, applied aspects and general interpretations. Springer, Berlin, pp 493–580 Mayne R (1974) A systems concept of the vestibular organs. In: Kornhuber HH (ed) Handbook of sensory physiology, vol VI. Vestibular system Part 2: psychophysics, applied aspects and general interpretations. Springer, Berlin, pp 493–580
41.
go back to reference Green AM, Angelaki DE (2010) Multisensory integration: resolving sensory ambiguities to build novel representations. Curr Opin Neurobiol 20:353–60CrossRefPubMed Green AM, Angelaki DE (2010) Multisensory integration: resolving sensory ambiguities to build novel representations. Curr Opin Neurobiol 20:353–60CrossRefPubMed
42.
go back to reference Wilden A, Glasauer S, Kleine JF, Büttner U (2002) Modelling transfer characteristics of vestibular neurons in the fastigial nucleus of the behaving monkey on the basis of canal-otolith interaction. Neuroreport 13:799–804CrossRefPubMed Wilden A, Glasauer S, Kleine JF, Büttner U (2002) Modelling transfer characteristics of vestibular neurons in the fastigial nucleus of the behaving monkey on the basis of canal-otolith interaction. Neuroreport 13:799–804CrossRefPubMed
43.
go back to reference Laurens J, Meng H, Angelaki DE (2013) Neural representation of orientation relative to gravity in the macaque cerebellum. Neuron 80:1508–1518CrossRefPubMed Laurens J, Meng H, Angelaki DE (2013) Neural representation of orientation relative to gravity in the macaque cerebellum. Neuron 80:1508–1518CrossRefPubMed
44.
45.
46.
go back to reference Mittelstaedt H (1983) A new solution to the problem of the subjective vertical. Naturwissenschaften 70:272–281CrossRefPubMed Mittelstaedt H (1983) A new solution to the problem of the subjective vertical. Naturwissenschaften 70:272–281CrossRefPubMed
47.
go back to reference Eggert T (1998) Der Einfluss orientierter Texturen auf die subjektive visuelle Vertikale und seine systemtheoretische Analyse. Dissertation, Technical University of Munich Eggert T (1998) Der Einfluss orientierter Texturen auf die subjektive visuelle Vertikale und seine systemtheoretische Analyse. Dissertation, Technical University of Munich
48.
go back to reference Vingerhoets RA, De Vrijer M, Van Gisbergen JA, Medendorp WP (2009) Fusion of visual and vestibular tilt cues in the perception of visual vertical. J Neurophysiol 101:1321–1333CrossRefPubMed Vingerhoets RA, De Vrijer M, Van Gisbergen JA, Medendorp WP (2009) Fusion of visual and vestibular tilt cues in the perception of visual vertical. J Neurophysiol 101:1321–1333CrossRefPubMed
50.
go back to reference Schneider E, Glasauer S, Dieterich M (2002) Comparison of human ocular torsion patterns during natural and galvanic vestibular stimulation. J Neurophysiol 87:2064–2073CrossRefPubMed Schneider E, Glasauer S, Dieterich M (2002) Comparison of human ocular torsion patterns during natural and galvanic vestibular stimulation. J Neurophysiol 87:2064–2073CrossRefPubMed
51.
go back to reference Choi JY, Glasauer S, Kim JH, Zee D, Kim JS (2018) Characteristics and mechanism of apogeotropic central positional nystagmus. Brain 141:762–775CrossRefPubMed Choi JY, Glasauer S, Kim JH, Zee D, Kim JS (2018) Characteristics and mechanism of apogeotropic central positional nystagmus. Brain 141:762–775CrossRefPubMed
52.
go back to reference Glasauer S, Mittelstaedt H (1998) Perception of spatial orientation in microgravity. Brain Res Brain Res Rev 28:185–93CrossRefPubMed Glasauer S, Mittelstaedt H (1998) Perception of spatial orientation in microgravity. Brain Res Brain Res Rev 28:185–93CrossRefPubMed
53.
go back to reference Harris LR, Jenkin M, Jenkin H, Zacher JE, Dyde RT (2017) The effect of long-term exposure to microgravity on the perception of upright. NPJ Microgravity 3:3CrossRefPubMedPubMedCentral Harris LR, Jenkin M, Jenkin H, Zacher JE, Dyde RT (2017) The effect of long-term exposure to microgravity on the perception of upright. NPJ Microgravity 3:3CrossRefPubMedPubMedCentral
54.
go back to reference Cnyrim CD, Rettinger N, Mansmann U, Brandt T, Strupp M (2007) Central compensation of deviated subjective visual vertical in Wallenberg's syndrome. J Neurol Neurosurg Psychiatry 78(5):527–528CrossRefPubMedPubMedCentral Cnyrim CD, Rettinger N, Mansmann U, Brandt T, Strupp M (2007) Central compensation of deviated subjective visual vertical in Wallenberg's syndrome. J Neurol Neurosurg Psychiatry 78(5):527–528CrossRefPubMedPubMedCentral
55.
go back to reference Cnyrim CD, Newman-Toker D, Karch C, Brandt T, Strupp M (2008) Bedside differentiation of vestibular neuritis from central “vestibular pseudoneuritis”. J Neurol Neurosurg Psychiatry 79(4):458–460CrossRefPubMed Cnyrim CD, Newman-Toker D, Karch C, Brandt T, Strupp M (2008) Bedside differentiation of vestibular neuritis from central “vestibular pseudoneuritis”. J Neurol Neurosurg Psychiatry 79(4):458–460CrossRefPubMed
Metadata
Title
Neuronal network-based mathematical modeling of perceived verticality in acute unilateral vestibular lesions: from nerve to thalamus and cortex
Authors
S. Glasauer
M. Dieterich
T. Brandt
Publication date
01-10-2018
Publisher
Springer Berlin Heidelberg
Published in
Journal of Neurology / Issue Special Issue 1/2018
Print ISSN: 0340-5354
Electronic ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-018-8909-5

Other articles of this Special Issue 1/2018

Journal of Neurology 1/2018 Go to the issue