Skip to main content
Top
Published in: Journal of Neurology 1/2016

01-01-2016 | Original Communication

Role of the left frontal aslant tract in stuttering: a brain stimulation and tractographic study

Authors: Rahsan Kemerdere, Nicolas Menjot de Champfleur, Jérémy Deverdun, Jérôme Cochereau, Sylvie Moritz-Gasser, Guillaume Herbet, Hugues Duffau

Published in: Journal of Neurology | Issue 1/2016

Login to get access

Abstract

The neural correlates of stuttering are to date incompletely understood. Although the possible involvement of the basal ganglia, the cerebellum and certain parts of the cerebral cortex in this speech disorder has previously been reported, there are still not many studies investigating the role of white matter fibers in stuttering. Axonal stimulation during awake surgery provides a unique opportunity to study the functional role of structural connectivity. Here, our goal was to investigate the white matter tracts implicated in stuttering, by combining direct electrostimulation mapping and postoperative tractography imaging, with a special focus on the left frontal aslant tract. Eight patients with no preoperative stuttering underwent awake surgery for a left frontal low-grade glioma. Intraoperative cortical and axonal electrical mapping was used to interfere in speech processing and subsequently provoke stuttering. We further assessed the relationship between the subcortical sites leading to stuttering and the spatial course of the frontal aslant tract. All patients experienced intraoperative stuttering during axonal electrostimulation. On postsurgical tractographies, the subcortical distribution of stimulated sites matched the topographical position of the left frontal aslant tract. This white matter pathway was preserved during surgery, and no patients had postoperative stuttering. For the first time to our knowledge, by using direct axonal stimulation combined with postoperative tractography, we provide original data supporting a pivotal role of the left frontal aslant tract in stuttering. We propose that this speech disorder could be the result of a disconnection within a large-scale cortico-subcortical circuit subserving speech motor control.
Literature
1.
go back to reference Andrews G, Craig A, Feyer AM, Hoddinott S, Howie P, Neilson M (1983) Stuttering: a review of research findings and theories circa 1982. J Speech Hear Disord 48:226–246CrossRefPubMed Andrews G, Craig A, Feyer AM, Hoddinott S, Howie P, Neilson M (1983) Stuttering: a review of research findings and theories circa 1982. J Speech Hear Disord 48:226–246CrossRefPubMed
2.
go back to reference Espir MLE, Rose FC (1970) The basic neurology of speech. Blackwell Scientific Publications, Oxford Espir MLE, Rose FC (1970) The basic neurology of speech. Blackwell Scientific Publications, Oxford
3.
go back to reference Max L, Guenther FH, Gracco VL, Ghosh SS, Wallace ME (2004) Unstable or insufficiently activated internal models and feedback-biased motor control as sources of dysfluency: a theoretical model of stuttering. Contemp Issues Commun Sci Disord 31:105–122 Max L, Guenther FH, Gracco VL, Ghosh SS, Wallace ME (2004) Unstable or insufficiently activated internal models and feedback-biased motor control as sources of dysfluency: a theoretical model of stuttering. Contemp Issues Commun Sci Disord 31:105–122
4.
go back to reference Craig-McQuaide A, Akram H, Zrinzo L, Tripoliti E (2014) A review of brain circuitries involved in stuttering. Front Hum Neurosci 884:1–20 Craig-McQuaide A, Akram H, Zrinzo L, Tripoliti E (2014) A review of brain circuitries involved in stuttering. Front Hum Neurosci 884:1–20
5.
go back to reference Ludlow CL, Loucks T (2003) Stuttering: a dynamic motor control disorder. J Fluency Disord 28:273–295CrossRefPubMed Ludlow CL, Loucks T (2003) Stuttering: a dynamic motor control disorder. J Fluency Disord 28:273–295CrossRefPubMed
6.
go back to reference Bloodstein O (1995) A handbook on stuttering, 5th edn. Singular, San Diego Bloodstein O (1995) A handbook on stuttering, 5th edn. Singular, San Diego
7.
go back to reference Riaz N, Steinberg S, Ahmad J, Pluzhnikov A, Riazuddin S, Cox NJ, Drayna D (2005) Genome wide significant linkage to stuttering on chromosome 12. Am J Hum Genet 76:647–651PubMedCentralCrossRefPubMed Riaz N, Steinberg S, Ahmad J, Pluzhnikov A, Riazuddin S, Cox NJ, Drayna D (2005) Genome wide significant linkage to stuttering on chromosome 12. Am J Hum Genet 76:647–651PubMedCentralCrossRefPubMed
8.
go back to reference Forster DC, Webster WG (2001) Speech-motor control and interhemispheric relations in recovered and persistent stuttering. Dev Neuropsychol 19:125–145CrossRefPubMed Forster DC, Webster WG (2001) Speech-motor control and interhemispheric relations in recovered and persistent stuttering. Dev Neuropsychol 19:125–145CrossRefPubMed
9.
go back to reference Doi M, Nakayasu H, Soda T, Shimoda K, Ito A, Nakashima K (2003) Brainstem infarction presenting with neurogenic stuttering. Int Med 42:884–887CrossRef Doi M, Nakayasu H, Soda T, Shimoda K, Ito A, Nakashima K (2003) Brainstem infarction presenting with neurogenic stuttering. Int Med 42:884–887CrossRef
10.
go back to reference Dworkin JP, Culatta RA, Abkarian GG, Meleca RJ (2002) Laryngeal anesthetization for the treatment of acquired disfluency: a case study. J Fluency Disord 27:215–225CrossRefPubMed Dworkin JP, Culatta RA, Abkarian GG, Meleca RJ (2002) Laryngeal anesthetization for the treatment of acquired disfluency: a case study. J Fluency Disord 27:215–225CrossRefPubMed
11.
go back to reference Iverach L, Rapee RM (2014) Social anxiety disorder and stuttering: current status and future directions. J Fluency Disord 40:69–82CrossRefPubMed Iverach L, Rapee RM (2014) Social anxiety disorder and stuttering: current status and future directions. J Fluency Disord 40:69–82CrossRefPubMed
12.
go back to reference Lim EC, Wilder-Smith E, Ong BK, Seet RC (2005) Adult-onset re-emergent stuttering as a presentation of Parkinson’s disease. Ann Acad Med Singapore 34:579–581PubMed Lim EC, Wilder-Smith E, Ong BK, Seet RC (2005) Adult-onset re-emergent stuttering as a presentation of Parkinson’s disease. Ann Acad Med Singapore 34:579–581PubMed
13.
14.
go back to reference Brown S, Ingham RJ, Ingham JC, Laird AR, Fox PT (2005) Stuttered and fluent speech production: an ALE meta-analysis of functional neuroimaging studies. Hum Brain Mapp 25:105–117CrossRefPubMed Brown S, Ingham RJ, Ingham JC, Laird AR, Fox PT (2005) Stuttered and fluent speech production: an ALE meta-analysis of functional neuroimaging studies. Hum Brain Mapp 25:105–117CrossRefPubMed
15.
go back to reference Cykowski MD, Kochunov PV, Ingham RJ, Ingham JC, Mangin JF, Rivière D, Lancaster JL, Fox PT (2008) Perisylvian sulcal morphology and cerebral asymmetry patterns in adults who stutter. Cereb Cortex 18:571–583CrossRefPubMed Cykowski MD, Kochunov PV, Ingham RJ, Ingham JC, Mangin JF, Rivière D, Lancaster JL, Fox PT (2008) Perisylvian sulcal morphology and cerebral asymmetry patterns in adults who stutter. Cereb Cortex 18:571–583CrossRefPubMed
16.
go back to reference Foundas AL, Bollich AM, Corey DM, Hurley M, Heilman KM (2001) Anomalous anatomy of speech-language areas in adults with persistent developmental stuttering. Neurology 57:207–215CrossRefPubMed Foundas AL, Bollich AM, Corey DM, Hurley M, Heilman KM (2001) Anomalous anatomy of speech-language areas in adults with persistent developmental stuttering. Neurology 57:207–215CrossRefPubMed
18.
go back to reference Watkins KE, Smith SM, Davis S, Howell P (2008) Structural and functional abnormalities of the motor system in developmental stuttering. Brain 131:50–59PubMedCentralCrossRefPubMed Watkins KE, Smith SM, Davis S, Howell P (2008) Structural and functional abnormalities of the motor system in developmental stuttering. Brain 131:50–59PubMedCentralCrossRefPubMed
19.
go back to reference Alm P (2004) Stuttering and the basal ganglia circuits: a critical review of possible relations. J Commun Disord 37:325–369CrossRefPubMed Alm P (2004) Stuttering and the basal ganglia circuits: a critical review of possible relations. J Commun Disord 37:325–369CrossRefPubMed
20.
go back to reference Lu C, Peng D, Chen C, Ning N, Ding G, Li K, Yang Y, Lin C (2010) Altered effective connectivity and anomalous anatomy in the basal ganglia-thalamocortical circuit of stuttering speakers. Cortex 46:49–67CrossRefPubMed Lu C, Peng D, Chen C, Ning N, Ding G, Li K, Yang Y, Lin C (2010) Altered effective connectivity and anomalous anatomy in the basal ganglia-thalamocortical circuit of stuttering speakers. Cortex 46:49–67CrossRefPubMed
21.
go back to reference Carluer L, Marié RM, Lambert J, Defer GL, Coskun O, Rossa Y (2000) Acquired and persistent stuttering as the main symptom of striatal infarction. Mov Disord 15:343–346CrossRefPubMed Carluer L, Marié RM, Lambert J, Defer GL, Coskun O, Rossa Y (2000) Acquired and persistent stuttering as the main symptom of striatal infarction. Mov Disord 15:343–346CrossRefPubMed
22.
go back to reference Giraud AL, Neumann K, Bachoud-Levi AC, von Gudenberg AW, Euler HA, Lanfermann H, Preibisch C (2008) Severity of dysfluency correlates with basal ganglia activity in persistent developmental stuttering. Brain Lang 104:190–199CrossRefPubMed Giraud AL, Neumann K, Bachoud-Levi AC, von Gudenberg AW, Euler HA, Lanfermann H, Preibisch C (2008) Severity of dysfluency correlates with basal ganglia activity in persistent developmental stuttering. Brain Lang 104:190–199CrossRefPubMed
23.
go back to reference Neumann K, Euler HA, von Gudenberg AW, Giraud AL, Lanfermann H, Gall V, Preibisch C (2003) The nature and treatment of stuttering as revealed by fMRI A within- and between-group comparison. J Fluency Disord 28:381–409CrossRefPubMed Neumann K, Euler HA, von Gudenberg AW, Giraud AL, Lanfermann H, Gall V, Preibisch C (2003) The nature and treatment of stuttering as revealed by fMRI A within- and between-group comparison. J Fluency Disord 28:381–409CrossRefPubMed
24.
25.
go back to reference Chang SE, Zhu DC, Choo AL, Angstadt M (2015) White matter neuroanatomical differences in young children who stutter. Brain 138:694–711CrossRefPubMed Chang SE, Zhu DC, Choo AL, Angstadt M (2015) White matter neuroanatomical differences in young children who stutter. Brain 138:694–711CrossRefPubMed
26.
go back to reference Connally EL, Ward D, Howell P, Watkins KE (2014) Disrupted white matter in language and motor tracts in developmental stuttering. Brain Lang 131:25–35CrossRefPubMed Connally EL, Ward D, Howell P, Watkins KE (2014) Disrupted white matter in language and motor tracts in developmental stuttering. Brain Lang 131:25–35CrossRefPubMed
27.
go back to reference Sommer M, Koch MA, Paulus W, Weiller C, Büchel C (2002) Disconnection of speech-relevant brain areas in persistent developmental stuttering. Lancet 360:380–383CrossRefPubMed Sommer M, Koch MA, Paulus W, Weiller C, Büchel C (2002) Disconnection of speech-relevant brain areas in persistent developmental stuttering. Lancet 360:380–383CrossRefPubMed
28.
go back to reference Duffau H (2015) Stimulation mapping of white matter tracts to study brain functional connectivity. Nat Rev Neurol 11:255–265CrossRefPubMed Duffau H (2015) Stimulation mapping of white matter tracts to study brain functional connectivity. Nat Rev Neurol 11:255–265CrossRefPubMed
29.
go back to reference Duffau H (2012) The challenge to remove diffuse low-grade gliomas while preserving brain functions. Acta Neurochir 154:569–574CrossRefPubMed Duffau H (2012) The challenge to remove diffuse low-grade gliomas while preserving brain functions. Acta Neurochir 154:569–574CrossRefPubMed
30.
go back to reference Duffau H, Taillandier L (2015) New concepts in the management of diffuse low-grade glioma: proposal of a multistage and individualized therapeutic approach. Neuro-Oncology 17:332–342PubMed Duffau H, Taillandier L (2015) New concepts in the management of diffuse low-grade glioma: proposal of a multistage and individualized therapeutic approach. Neuro-Oncology 17:332–342PubMed
31.
go back to reference Duffau H, Gatignol P, Mandonnet E, Peruzzi P, Tzourio-Mazoyer N, Capelle L (2005) New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical stimulations. Brain 128:797–810CrossRefPubMed Duffau H, Gatignol P, Mandonnet E, Peruzzi P, Tzourio-Mazoyer N, Capelle L (2005) New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical stimulations. Brain 128:797–810CrossRefPubMed
32.
go back to reference Duffau H, Gatignol P, Mandonnet E, Capelle L, Taillandier L (2008) Intraoperative subcortical stimulation mapping of language pathways in a consecutive series of 115 patients with Grade II glioma in the left dominant hemisphere. J Neurosurg 109:461–471CrossRefPubMed Duffau H, Gatignol P, Mandonnet E, Capelle L, Taillandier L (2008) Intraoperative subcortical stimulation mapping of language pathways in a consecutive series of 115 patients with Grade II glioma in the left dominant hemisphere. J Neurosurg 109:461–471CrossRefPubMed
33.
go back to reference Fernández Coello A, Moritz-Gasser S, Martino J, Martinoni M, Matsuda R, Duffau H (2013) Selection of intraoperative tasks for awake mapping based on relationships between tumor location and functional networks. J Neurosurg 119:1380–1394CrossRefPubMed Fernández Coello A, Moritz-Gasser S, Martino J, Martinoni M, Matsuda R, Duffau H (2013) Selection of intraoperative tasks for awake mapping based on relationships between tumor location and functional networks. J Neurosurg 119:1380–1394CrossRefPubMed
34.
go back to reference Metz-Lutz MN, Kremin H, Deloche G (1991) Standardisation d’un test de dénomination orale: contrôle des effets de l’âge, du sexe et du niveau de scolarité chez les sujets adultes normaux. Rev Neuropsychol 1:73–95 Metz-Lutz MN, Kremin H, Deloche G (1991) Standardisation d’un test de dénomination orale: contrôle des effets de l’âge, du sexe et du niveau de scolarité chez les sujets adultes normaux. Rev Neuropsychol 1:73–95
35.
go back to reference Howard D, Patterson K (1992) The pyramid and palm trees test. Thames Valley Test Company, Bury StEdmunds Howard D, Patterson K (1992) The pyramid and palm trees test. Thames Valley Test Company, Bury StEdmunds
36.
go back to reference Moritz-Gasser S, Herbet G, Duffau H (2013) Mapping the connectivity underlying multimodal (verbal and non-verbal) semantic processing: a brain electrostimulation study. Neuropsychologia 51:1814–1822CrossRefPubMed Moritz-Gasser S, Herbet G, Duffau H (2013) Mapping the connectivity underlying multimodal (verbal and non-verbal) semantic processing: a brain electrostimulation study. Neuropsychologia 51:1814–1822CrossRefPubMed
37.
go back to reference Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW (2007) Probabilistic diffusion tractography with multiple fiber orientations: what can we gain? Neuroimage 34:144–155CrossRefPubMed Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW (2007) Probabilistic diffusion tractography with multiple fiber orientations: what can we gain? Neuroimage 34:144–155CrossRefPubMed
39.
go back to reference Amunts K, Weiss PH, Mohlberg H, Pieperhoff P, Eickhoff S, Gurd JM, Marshall JC, Shah NJ, Fink GR, Zilles K (2004) Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space–the roles of Brodmann areas 44 and 45. Neuroimage 22:42–56CrossRefPubMed Amunts K, Weiss PH, Mohlberg H, Pieperhoff P, Eickhoff S, Gurd JM, Marshall JC, Shah NJ, Fink GR, Zilles K (2004) Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space–the roles of Brodmann areas 44 and 45. Neuroimage 22:42–56CrossRefPubMed
40.
go back to reference Kaplan E, Naeser MA, Martin PI, Ho M, Wang Y, Baker E, Pascual-Leone A (2010) Horizontal portion of arcuate fasciculus fibers track to pars opercularis, not pars triangularis, in right and left hemispheres: a DTI study. Neuroimage 52:436–444PubMedCentralCrossRefPubMed Kaplan E, Naeser MA, Martin PI, Ho M, Wang Y, Baker E, Pascual-Leone A (2010) Horizontal portion of arcuate fasciculus fibers track to pars opercularis, not pars triangularis, in right and left hemispheres: a DTI study. Neuroimage 52:436–444PubMedCentralCrossRefPubMed
41.
42.
go back to reference Rizzolatti G, Luppino G, Matelli M (1996) The classic supplementary motor area is formed by two independent areas. Adv Neurol 70:45–56PubMed Rizzolatti G, Luppino G, Matelli M (1996) The classic supplementary motor area is formed by two independent areas. Adv Neurol 70:45–56PubMed
43.
go back to reference Bennett IJ, Motes MA, Rao NK, Rypma B (2012) White matter tract integrity predicts visual search performance in young and older adults. Neurobiol Aging 33:433.e21–e31CrossRef Bennett IJ, Motes MA, Rao NK, Rypma B (2012) White matter tract integrity predicts visual search performance in young and older adults. Neurobiol Aging 33:433.e21–e31CrossRef
44.
go back to reference Kinoshita M, de Champfleur NM, Deverdun J, Moritz-Gasser S, Herbet G, Duffau H (2015) Role of fronto-striatal tract and frontal aslant tract in movement and speech: an axonal mapping study. Brain Struct Funct 220:3399–3412CrossRefPubMed Kinoshita M, de Champfleur NM, Deverdun J, Moritz-Gasser S, Herbet G, Duffau H (2015) Role of fronto-striatal tract and frontal aslant tract in movement and speech: an axonal mapping study. Brain Struct Funct 220:3399–3412CrossRefPubMed
45.
go back to reference Schucht P, Moritz-Gasser S, Herbet G, Raabe A, Duffau H (2013) Subcortical electrostimulation to identify network subserving motor control. Hum Brain Mapp 4:3023–3030CrossRef Schucht P, Moritz-Gasser S, Herbet G, Raabe A, Duffau H (2013) Subcortical electrostimulation to identify network subserving motor control. Hum Brain Mapp 4:3023–3030CrossRef
46.
go back to reference Yordanova Y, Moritz-Gasser S, Duffau H (2011) Awake surgery for WHO Grade II gliomas within “noneloquent” areas in the left dominant hemisphere: toward a “supratotal” resection. J Neurosurg 115:232–239CrossRefPubMed Yordanova Y, Moritz-Gasser S, Duffau H (2011) Awake surgery for WHO Grade II gliomas within “noneloquent” areas in the left dominant hemisphere: toward a “supratotal” resection. J Neurosurg 115:232–239CrossRefPubMed
47.
go back to reference Duffau H (2014) The huge plastic potential of adult brain and the role of connectomics: new insights provided by serial mappings in glioma surgery. Cortex 58:325–337CrossRefPubMed Duffau H (2014) The huge plastic potential of adult brain and the role of connectomics: new insights provided by serial mappings in glioma surgery. Cortex 58:325–337CrossRefPubMed
48.
go back to reference Penfield W, Welch K (1951) The supplementary motor area of the cerebral cortex: a clinical and experimental study. Arch Neurol Psychiatry 66:289–317CrossRef Penfield W, Welch K (1951) The supplementary motor area of the cerebral cortex: a clinical and experimental study. Arch Neurol Psychiatry 66:289–317CrossRef
49.
50.
go back to reference Moretti R, Torre P, Antonello RM, Capus L, Gioulis M, Zambito Marsala S, Cazzato G, Bava A (2003) Speech initiation hesitation’ following subthalamic nucleus stimulation in a patient with Parkinson’s disease. Eur Neurol 49:251–253CrossRefPubMed Moretti R, Torre P, Antonello RM, Capus L, Gioulis M, Zambito Marsala S, Cazzato G, Bava A (2003) Speech initiation hesitation’ following subthalamic nucleus stimulation in a patient with Parkinson’s disease. Eur Neurol 49:251–253CrossRefPubMed
51.
go back to reference Nebel A, Reese R, Deuschl G, Mehdorn HM, Volkmann J (2009) Acquired stuttering after pallidal deep brain stimulation for dystonia. J Neural Transm 116:167–169CrossRefPubMed Nebel A, Reese R, Deuschl G, Mehdorn HM, Volkmann J (2009) Acquired stuttering after pallidal deep brain stimulation for dystonia. J Neural Transm 116:167–169CrossRefPubMed
52.
go back to reference Lawes IN, Barrick TR, Murugam V, Spierings N, Evans DR, Song M, Clark CA (2008) Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection. Neuroimage 39:62–79CrossRefPubMed Lawes IN, Barrick TR, Murugam V, Spierings N, Evans DR, Song M, Clark CA (2008) Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection. Neuroimage 39:62–79CrossRefPubMed
53.
54.
go back to reference Catani M, Dell’acqua F, Vergani F, Malik F, Hodge H, Roy P, Valabregue R, Thiebaut de Schotten M (2012) Short frontal lobe connections of the human brain. Cortex 48:273–291CrossRefPubMed Catani M, Dell’acqua F, Vergani F, Malik F, Hodge H, Roy P, Valabregue R, Thiebaut de Schotten M (2012) Short frontal lobe connections of the human brain. Cortex 48:273–291CrossRefPubMed
55.
go back to reference Oishi K, Zilles K, Amunts K, Faria A, Jiang H, Li X, Akhter K, Hua K, Woods R, Toga AW, Pike GB, Rosa-Neto P, Evans A, Zhang J, Huang H, Miller MI, van Zijl PC, Mazziotta J, Mori S (2008) Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter. NeuroImage 43:447–457PubMedCentralCrossRefPubMed Oishi K, Zilles K, Amunts K, Faria A, Jiang H, Li X, Akhter K, Hua K, Woods R, Toga AW, Pike GB, Rosa-Neto P, Evans A, Zhang J, Huang H, Miller MI, van Zijl PC, Mazziotta J, Mori S (2008) Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter. NeuroImage 43:447–457PubMedCentralCrossRefPubMed
56.
go back to reference Catani M, Mesulam MM, Jakobsen E, Malik F, Martersteck A, Wieneke C, Thompson CK, Thiebaut de Schotten M, Dell’Acqua F, Weintraub S, Rogalski E (2013) A novel frontal pathway underlies verbal fluency in primary progressive aphasia. Brain 136:2619–2628PubMedCentralCrossRefPubMed Catani M, Mesulam MM, Jakobsen E, Malik F, Martersteck A, Wieneke C, Thompson CK, Thiebaut de Schotten M, Dell’Acqua F, Weintraub S, Rogalski E (2013) A novel frontal pathway underlies verbal fluency in primary progressive aphasia. Brain 136:2619–2628PubMedCentralCrossRefPubMed
57.
go back to reference Kronfeld-Duenias V, Amir O, Ezrati-Vinacour R, Civier O, Ben-Shachar M (2014) The frontal aslant tract underlies speech fluency in persistent developmental stuttering. Brain Struct Funct. doi:10.1007/s00429-014-0912-8 PubMed Kronfeld-Duenias V, Amir O, Ezrati-Vinacour R, Civier O, Ben-Shachar M (2014) The frontal aslant tract underlies speech fluency in persistent developmental stuttering. Brain Struct Funct. doi:10.​1007/​s00429-014-0912-8 PubMed
58.
go back to reference Vassal F, Boutet C, Lemaire JJ, Nuti C (2014) New insights into the functional significance of the frontal aslant tract—an anatomo-functional study using intraoperative electrical stimulations combined with diffusion tensor imaging-based fiber tracking. Br J Neurosurg 28:685–687CrossRefPubMed Vassal F, Boutet C, Lemaire JJ, Nuti C (2014) New insights into the functional significance of the frontal aslant tract—an anatomo-functional study using intraoperative electrical stimulations combined with diffusion tensor imaging-based fiber tracking. Br J Neurosurg 28:685–687CrossRefPubMed
59.
go back to reference Ackermann H, Riecker A (2011) The contribution(s) of the insula to speech production: a review of the clinical and functional imaging literature. Brain Struct Funct 214:419e433 Ackermann H, Riecker A (2011) The contribution(s) of the insula to speech production: a review of the clinical and functional imaging literature. Brain Struct Funct 214:419e433
60.
go back to reference Fridriksson J, Moser D, Ryalls J, Bonilha L, Rorden C, Baylis G (2009) Modulation of frontal lobe speech areas associated with the production and perception of speech movements. J Speech Lang Hear Res 52:812–819PubMedCentralCrossRefPubMed Fridriksson J, Moser D, Ryalls J, Bonilha L, Rorden C, Baylis G (2009) Modulation of frontal lobe speech areas associated with the production and perception of speech movements. J Speech Lang Hear Res 52:812–819PubMedCentralCrossRefPubMed
61.
go back to reference Ikeda A, Yazawa S, Kunieda T, Ohara S, Terada K, Mikuni N, Nagamine T, Taki W, Kimura J, Shibasaki H (1999) Cognitive motor control in human pre-supplementary motor area studied by subdural recording of discrimination/selection-related potentials. Brain 122:915–931CrossRefPubMed Ikeda A, Yazawa S, Kunieda T, Ohara S, Terada K, Mikuni N, Nagamine T, Taki W, Kimura J, Shibasaki H (1999) Cognitive motor control in human pre-supplementary motor area studied by subdural recording of discrimination/selection-related potentials. Brain 122:915–931CrossRefPubMed
62.
go back to reference Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S (2004) The role of the medial frontal cortex in cognitive control. Science 306:443–447CrossRefPubMed Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S (2004) The role of the medial frontal cortex in cognitive control. Science 306:443–447CrossRefPubMed
63.
go back to reference Zentgraf K, Stark R, Reiser M, Kunzell S, Schienle A, Kirsch P, Walter B, Vaitl D, Munzert J (2005) Differential activation of pre-SMA and SMA proper during action observation: effects of instructions. Neuroimage 26:662–672CrossRefPubMed Zentgraf K, Stark R, Reiser M, Kunzell S, Schienle A, Kirsch P, Walter B, Vaitl D, Munzert J (2005) Differential activation of pre-SMA and SMA proper during action observation: effects of instructions. Neuroimage 26:662–672CrossRefPubMed
64.
go back to reference Cunnington R, Bradshaw JL, Iansek R (1996) The role of the supplementary motor area in the control of voluntary movement. Hum Mov Sci 15:627–647CrossRef Cunnington R, Bradshaw JL, Iansek R (1996) The role of the supplementary motor area in the control of voluntary movement. Hum Mov Sci 15:627–647CrossRef
65.
go back to reference Guenther FH, Ghosh SS, Tourville JA (2006) Neural modeling and imaging of the cortical interactions underlying syllable production. Brain Lang 96:280–301PubMedCentralCrossRefPubMed Guenther FH, Ghosh SS, Tourville JA (2006) Neural modeling and imaging of the cortical interactions underlying syllable production. Brain Lang 96:280–301PubMedCentralCrossRefPubMed
66.
go back to reference Bohland JW, Bullock D, Guenther FH (2010) Neural representations and mechanisms for the performance of simple speech sequences. J Cogn Neurosci 22:1504–1529PubMedCentralCrossRefPubMed Bohland JW, Bullock D, Guenther FH (2010) Neural representations and mechanisms for the performance of simple speech sequences. J Cogn Neurosci 22:1504–1529PubMedCentralCrossRefPubMed
67.
go back to reference Papoutsi M, de Zwart JA, Jansma JM, Pickering MJ, Bednar JA, Horwitz B (2009) From phonemes to articulatory codes: an fMRI study of the role of Broca’s area in speech production. Cereb Cortex 19:2156–2165PubMedCentralCrossRefPubMed Papoutsi M, de Zwart JA, Jansma JM, Pickering MJ, Bednar JA, Horwitz B (2009) From phonemes to articulatory codes: an fMRI study of the role of Broca’s area in speech production. Cereb Cortex 19:2156–2165PubMedCentralCrossRefPubMed
68.
go back to reference Kinoshita M, Shinohara H, Hori O, Ozaki N, Ueda F, Nakada M, Hamada J, Hayashi Y (2012) Association fibers connecting the Broca center and the lateral superior frontal gyrus: a microsurgical and tractographic anatomy. J Neurosurg 116:323–330CrossRefPubMed Kinoshita M, Shinohara H, Hori O, Ozaki N, Ueda F, Nakada M, Hamada J, Hayashi Y (2012) Association fibers connecting the Broca center and the lateral superior frontal gyrus: a microsurgical and tractographic anatomy. J Neurosurg 116:323–330CrossRefPubMed
69.
go back to reference Braun AR, Varga M, Stager S, Schulz G, Selbie S, Maisog JM, Carson RE, Ludlow CL (1997) Altered patterns of cerebral activity during speech and language production in developmental stuttering. An H2(15)O positron emission tomography study. Brain 120:761–784CrossRefPubMed Braun AR, Varga M, Stager S, Schulz G, Selbie S, Maisog JM, Carson RE, Ludlow CL (1997) Altered patterns of cerebral activity during speech and language production in developmental stuttering. An H2(15)O positron emission tomography study. Brain 120:761–784CrossRefPubMed
70.
go back to reference Nakano K, Kayahara T, Tsutsumi T, Ushiro H (2000) Neural circuits and functional organization of the striatum. J Neurol 247(Suppl 5):V1–V15CrossRefPubMed Nakano K, Kayahara T, Tsutsumi T, Ushiro H (2000) Neural circuits and functional organization of the striatum. J Neurol 247(Suppl 5):V1–V15CrossRefPubMed
Metadata
Title
Role of the left frontal aslant tract in stuttering: a brain stimulation and tractographic study
Authors
Rahsan Kemerdere
Nicolas Menjot de Champfleur
Jérémy Deverdun
Jérôme Cochereau
Sylvie Moritz-Gasser
Guillaume Herbet
Hugues Duffau
Publication date
01-01-2016
Publisher
Springer Berlin Heidelberg
Published in
Journal of Neurology / Issue 1/2016
Print ISSN: 0340-5354
Electronic ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-015-7949-3

Other articles of this Issue 1/2016

Journal of Neurology 1/2016 Go to the issue