Skip to main content
Top
Published in: Journal of Neurology 10/2014

01-10-2014 | Original Communication

Cerebellar metabolic involvement and its correlations with clinical parameters in vestibular neuritis

Authors: Marco Alessandrini, Alessandro Micarelli, Agostino Chiaravalloti, Matteo Candidi, Ernesto Bruno, Barbara Di Pietro, Johanna Öberg, Orazio Schillaci, Marco Pagani

Published in: Journal of Neurology | Issue 10/2014

Login to get access

Abstract

Although vestibular neuritis (VN) cortical models are described in the literature, there is lack of knowledge regarding the exclusive cerebellar involvement. The aim of the present study was to analyze, by [18F] fluorodeoxyglucose-positron emission tomography (FDG-PET)/computer tomography, regional cerebellar FDG uptake in eight right-handed VN patients (five females; three males; mean age 48 ± 7 years) during the first few days (PET0) and after 1 month (PET1) since symptoms onset. At both phases, patients underwent otoneurological examination and filled in a battery of validated questionnaires. Twenty-six cerebellar volumes of interest (VOI) were identified by the automated anatomical labeling library and normalized to thalamus FDG-PET uptake. Mean intensity within VOIs was calculated in both phases and processed by within-subjects ANOVA. A significantly lower (p < 0.005) FDG uptake distribution was found in bilateral lobules III, VI and X and in vermis 1–2, 3, 6 and 10 at PET0 as compared to PET1 and a significant higher FDG uptake distribution was found in right crus I in the same comparison. Significant (p < 0.05) positive correlations were found between Anxiety and Bucket test scores, and normalized metabolism in right crus I (at PET0) and vermis 10 (at PET1), respectively. A negative correlation was found at PET0 between slow-phase velocity scores and normalized metabolism in right lobule X. These data show relevant changes in the pattern of cerebellar metabolism that might unravel additional central aspects of early and late VN associated to bilateral cortical responses to sensory conflict during the acute VN-related controversial inflow.
Literature
1.
go back to reference Alessandrini M, Pagani M, Napolitano B, Micarelli A, Candidi M, Bruno E et al (2013) Early and phasic cortical metabolic changes in vestibular neuritis onset. PLoS One 8:e57596PubMedCentralCrossRefPubMed Alessandrini M, Pagani M, Napolitano B, Micarelli A, Candidi M, Bruno E et al (2013) Early and phasic cortical metabolic changes in vestibular neuritis onset. PLoS One 8:e57596PubMedCentralCrossRefPubMed
3.
go back to reference Pollak L, Klein C, Rafael S, Vera K, Rabey JM (2003) Anxiety in the first attack of vertigo. Otolaryngol Head Neck Surg 128:829–834CrossRefPubMed Pollak L, Klein C, Rafael S, Vera K, Rabey JM (2003) Anxiety in the first attack of vertigo. Otolaryngol Head Neck Surg 128:829–834CrossRefPubMed
4.
go back to reference Tschan R, Wiltink J, Best C, Bense S, Dieterich M, Beutel ME et al (2008) German version of the Vertigo Symptom Scale (VSS) in patients with organic orsomatoform dizziness and healthy controls. J Neurol 255:1168–1175CrossRefPubMed Tschan R, Wiltink J, Best C, Bense S, Dieterich M, Beutel ME et al (2008) German version of the Vertigo Symptom Scale (VSS) in patients with organic orsomatoform dizziness and healthy controls. J Neurol 255:1168–1175CrossRefPubMed
6.
go back to reference Brandt T, Bartenstein P, Janek A, Dieterich M (1998) Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parietoinsular vestibular cortex. Brain 121:1749–1758CrossRefPubMed Brandt T, Bartenstein P, Janek A, Dieterich M (1998) Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parietoinsular vestibular cortex. Brain 121:1749–1758CrossRefPubMed
7.
go back to reference Bense S, Bartenstein P, Lochmann M, Schlindwein P, Brandt T, Dieterich M (2004) Metabolic changes in vestibular and visual cortices in acute vestibular neuritis. Ann Neurol 56:624–630CrossRefPubMed Bense S, Bartenstein P, Lochmann M, Schlindwein P, Brandt T, Dieterich M (2004) Metabolic changes in vestibular and visual cortices in acute vestibular neuritis. Ann Neurol 56:624–630CrossRefPubMed
8.
go back to reference Dieterich M, Brandt T (2008) Functional brain imaging of peripheral and central vestibular disorders. Brain 131:2538–2552CrossRefPubMed Dieterich M, Brandt T (2008) Functional brain imaging of peripheral and central vestibular disorders. Brain 131:2538–2552CrossRefPubMed
9.
go back to reference Dieterich M, Brandt T (2010) Imaging cortical activity after vestibular lesions. Restor Neurol Neurosci 28:47–56PubMed Dieterich M, Brandt T (2010) Imaging cortical activity after vestibular lesions. Restor Neurol Neurosci 28:47–56PubMed
10.
go back to reference Helmchen C, Klinkenstein J, Machner B, Rambold H, Mohr C, Sander T (2009) Structural changes in the human brain following vestibular neuritis indicate central vestibular compensation. Ann N Y Acad Sci 1164:104–115CrossRefPubMed Helmchen C, Klinkenstein J, Machner B, Rambold H, Mohr C, Sander T (2009) Structural changes in the human brain following vestibular neuritis indicate central vestibular compensation. Ann N Y Acad Sci 1164:104–115CrossRefPubMed
11.
go back to reference Angelaki DE, Cullen KE (2008) Vestibular system: the many facets of a multimodal sense. Annu Rev Neurosci 31:125–150CrossRefPubMed Angelaki DE, Cullen KE (2008) Vestibular system: the many facets of a multimodal sense. Annu Rev Neurosci 31:125–150CrossRefPubMed
12.
go back to reference Eulenburg P, Stoeter P, Dieterich M (2010) Voxel-based morphometry depicts central compensation after vestibular neuritis. Ann Neurol 68:241–249CrossRefPubMed Eulenburg P, Stoeter P, Dieterich M (2010) Voxel-based morphometry depicts central compensation after vestibular neuritis. Ann Neurol 68:241–249CrossRefPubMed
13.
go back to reference Cooper CW (1993) Vestibular neuronitis: a review of a common cause of vertigo in general practice. Br J Gen Pract 43:164–167PubMedCentralPubMed Cooper CW (1993) Vestibular neuronitis: a review of a common cause of vertigo in general practice. Br J Gen Pract 43:164–167PubMedCentralPubMed
14.
go back to reference Varrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F, Någren K, European Association of Nuclear Medicine Neuroimaging Committee et al (2009) EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging 36:2103–2110CrossRefPubMed Varrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F, Någren K, European Association of Nuclear Medicine Neuroimaging Committee et al (2009) EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging 36:2103–2110CrossRefPubMed
15.
go back to reference Honrubia V (1994) Quantitative vestibular function tests and the clinical examination. In: Herdman SJ (ed) Vestibular rehabilitation. Davis, Philadelphia, pp 113–164 Honrubia V (1994) Quantitative vestibular function tests and the clinical examination. In: Herdman SJ (ed) Vestibular rehabilitation. Davis, Philadelphia, pp 113–164
16.
go back to reference Zwergal A, Rettinger N, Frenzel C, Dieterich M, Brandt T, Strupp M (2009) A bucket of static vestibular function. Neurology 72:1689–1692CrossRefPubMed Zwergal A, Rettinger N, Frenzel C, Dieterich M, Brandt T, Strupp M (2009) A bucket of static vestibular function. Neurology 72:1689–1692CrossRefPubMed
17.
go back to reference Gomez-Alvarez FB, Jauregui-Renaud K (2011) Psychological symptoms and spatial orientation during the first 3 months after acute unilateral vestibular lesion. Arch Med Res 42:97–103CrossRefPubMed Gomez-Alvarez FB, Jauregui-Renaud K (2011) Psychological symptoms and spatial orientation during the first 3 months after acute unilateral vestibular lesion. Arch Med Res 42:97–103CrossRefPubMed
19.
go back to reference Cox BJ, Swinson RP (2002) Instrument to assess depersonalization/derealization in panic disorder. Depress Anxiety 15:172–175CrossRefPubMed Cox BJ, Swinson RP (2002) Instrument to assess depersonalization/derealization in panic disorder. Depress Anxiety 15:172–175CrossRefPubMed
20.
go back to reference Pagani M, Chiò A, Valentini MC, Öberg J, Nobili F, Calvo A et al (2014) Functional pattern of brain FDG-PET in amyotrophic lateral sclerosis. Neurology (in press) Pagani M, Chiò A, Valentini MC, Öberg J, Nobili F, Calvo A et al (2014) Functional pattern of brain FDG-PET in amyotrophic lateral sclerosis. Neurology (in press)
21.
go back to reference Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N et al (2002) Automated anatomical labelling of activations in spm using a macroscopic anatomical parcellation of the MNI MRI single subject brain. Neuroimage 15:273–289CrossRefPubMed Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N et al (2002) Automated anatomical labelling of activations in spm using a macroscopic anatomical parcellation of the MNI MRI single subject brain. Neuroimage 15:273–289CrossRefPubMed
22.
go back to reference Schmahmann JD, Doyon J, McDonald D, Holmes C, Lavoie K, Hurwitz AS et al (1999) Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. Neuroimage 10:233–260CrossRefPubMed Schmahmann JD, Doyon J, McDonald D, Holmes C, Lavoie K, Hurwitz AS et al (1999) Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. Neuroimage 10:233–260CrossRefPubMed
23.
go back to reference Schmahmann JD (2010) The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev 20:236–260CrossRefPubMed Schmahmann JD (2010) The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev 20:236–260CrossRefPubMed
24.
go back to reference Diedrichsen J (2006) A spatially unbiased atlas template of the human cerebellum. Neuroimage 33:127–138CrossRefPubMed Diedrichsen J (2006) A spatially unbiased atlas template of the human cerebellum. Neuroimage 33:127–138CrossRefPubMed
25.
go back to reference Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N (2009) A probabilistic MR atlas of the human cerebellum. Neuroimage 46:39–46CrossRefPubMed Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N (2009) A probabilistic MR atlas of the human cerebellum. Neuroimage 46:39–46CrossRefPubMed
26.
go back to reference Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44:489–501CrossRefPubMed Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44:489–501CrossRefPubMed
27.
go back to reference Stoodley CJ, Valera EM, Schmahmann JD (2012) Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage 59:1560–1570PubMedCentralCrossRefPubMed Stoodley CJ, Valera EM, Schmahmann JD (2012) Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage 59:1560–1570PubMedCentralCrossRefPubMed
28.
go back to reference Stoodley CJ, Schmahmann JD (2010) Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 46:831–844PubMedCentralCrossRefPubMed Stoodley CJ, Schmahmann JD (2010) Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 46:831–844PubMedCentralCrossRefPubMed
29.
go back to reference Schmahmann JD, Macmore J, Vangel M (2009) Cerebellar stroke without motor deficit: clinical evidence for motor and non-motor domains within the human cerebellum. Neuroscience 162:852–861PubMedCentralCrossRefPubMed Schmahmann JD, Macmore J, Vangel M (2009) Cerebellar stroke without motor deficit: clinical evidence for motor and non-motor domains within the human cerebellum. Neuroscience 162:852–861PubMedCentralCrossRefPubMed
30.
go back to reference Keren-Happuch E, Chen SH, Ho MH, Desmond JE (2014) A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum Brain Mapp 35:593–615PubMedCentralCrossRef Keren-Happuch E, Chen SH, Ho MH, Desmond JE (2014) A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum Brain Mapp 35:593–615PubMedCentralCrossRef
31.
go back to reference Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V et al (2009) Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci 29:8586–8594PubMedCentralCrossRefPubMed Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V et al (2009) Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci 29:8586–8594PubMedCentralCrossRefPubMed
32.
go back to reference Manni E, Petrosini L (2004) A century of cerebellar somatotopy: a debated representation. Nat Rev Neurosci 5:241–249CrossRefPubMed Manni E, Petrosini L (2004) A century of cerebellar somatotopy: a debated representation. Nat Rev Neurosci 5:241–249CrossRefPubMed
33.
34.
go back to reference O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H (2010) Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex 20:953–965PubMedCentralCrossRefPubMed O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H (2010) Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex 20:953–965PubMedCentralCrossRefPubMed
35.
go back to reference Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT (1996) Throwing while looking through prisms. II. Specificity and storage of multiple gaze-throw calibrations. Brain 119:1199–1211CrossRefPubMed Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT (1996) Throwing while looking through prisms. II. Specificity and storage of multiple gaze-throw calibrations. Brain 119:1199–1211CrossRefPubMed
36.
go back to reference Glickstein M (2000) How are visual areas of the brain connected to motor areas for the sensory guidance of movement? Trends Neurosci 23:613–617CrossRefPubMed Glickstein M (2000) How are visual areas of the brain connected to motor areas for the sensory guidance of movement? Trends Neurosci 23:613–617CrossRefPubMed
37.
go back to reference Bauswein E, Kolb FP, Leimbeck B, Rubia FJ (1983) Simple and complex spike activity of cerebellar Purkinje cells during active and passive movements in the awake monkey. J Physiol 339:379–394PubMedCentralCrossRefPubMed Bauswein E, Kolb FP, Leimbeck B, Rubia FJ (1983) Simple and complex spike activity of cerebellar Purkinje cells during active and passive movements in the awake monkey. J Physiol 339:379–394PubMedCentralCrossRefPubMed
38.
go back to reference Donga R, Dessem D (1993) An unrelayed projection of jaw-muscle spindle afferents to the cerebellum. Brain Res 626:347–350CrossRefPubMed Donga R, Dessem D (1993) An unrelayed projection of jaw-muscle spindle afferents to the cerebellum. Brain Res 626:347–350CrossRefPubMed
39.
go back to reference Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2:338–347CrossRefPubMed Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2:338–347CrossRefPubMed
40.
go back to reference Ito M (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 81:1143–1195PubMed Ito M (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 81:1143–1195PubMed
41.
42.
go back to reference Glickstein M, Sultan F, Voogd J (2011) Functional localization in the cerebellum. Cortex 47:59–80CrossRefPubMed Glickstein M, Sultan F, Voogd J (2011) Functional localization in the cerebellum. Cortex 47:59–80CrossRefPubMed
45.
46.
go back to reference Yakusheva TA, Shaikh AG, Green AM, Blazquez PM, Dickman JD, DE Angelaki (2007) Purkinje cells in posterior cerebellar vermis encode motion in an inertial reference frame. Neuron 54:973–985CrossRefPubMed Yakusheva TA, Shaikh AG, Green AM, Blazquez PM, Dickman JD, DE Angelaki (2007) Purkinje cells in posterior cerebellar vermis encode motion in an inertial reference frame. Neuron 54:973–985CrossRefPubMed
47.
go back to reference Barmack NH (2003) Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res Bull 60:511–541CrossRefPubMed Barmack NH (2003) Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res Bull 60:511–541CrossRefPubMed
48.
go back to reference du Lac S, Raymond JL, Sejnowski TJ, Lisberger SG (1995) Learning and memory in the vestibulo-ocular reflex. Annu Rev Neurosci 18:409–441CrossRefPubMed du Lac S, Raymond JL, Sejnowski TJ, Lisberger SG (1995) Learning and memory in the vestibulo-ocular reflex. Annu Rev Neurosci 18:409–441CrossRefPubMed
49.
go back to reference du Lac S (1996) Candidate cellular mechanisms of vestibulo-ocular reflex plasticity. Ann NY Acad Sci 781:489–498CrossRefPubMed du Lac S (1996) Candidate cellular mechanisms of vestibulo-ocular reflex plasticity. Ann NY Acad Sci 781:489–498CrossRefPubMed
50.
go back to reference Hirata Y, Highstein SM (2000) Analysis of the discharge pattern of floccular Purkinje cells in relation to vertical head and eye movement in the squirrel monkey. Prog Brain Res 124:221–332CrossRefPubMed Hirata Y, Highstein SM (2000) Analysis of the discharge pattern of floccular Purkinje cells in relation to vertical head and eye movement in the squirrel monkey. Prog Brain Res 124:221–332CrossRefPubMed
51.
go back to reference Blazquez PM, Hirata Y, Heiney SA, Green AM, Highstein SM (2003) Cerebellar signatures of vestibulo-ocular reflex motor learning. J Neurosci 29:9742–9751 Blazquez PM, Hirata Y, Heiney SA, Green AM, Highstein SM (2003) Cerebellar signatures of vestibulo-ocular reflex motor learning. J Neurosci 29:9742–9751
52.
go back to reference Partsalis AM, Zhang Y, Highstein SM (1995) Dorsal Y group in the squirrel monkey. II. Contribution of the cerebellar flocculus to neuronal responses in normal and adapted animals. J Neurophysiol 73:632–650PubMed Partsalis AM, Zhang Y, Highstein SM (1995) Dorsal Y group in the squirrel monkey. II. Contribution of the cerebellar flocculus to neuronal responses in normal and adapted animals. J Neurophysiol 73:632–650PubMed
53.
go back to reference Rambold H, Churchland A, Selig Y, Jasmin L, Lisberger SG (2002) Partial ablations of the flocculus and ventral paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR. J Neurophysiol 87:912–924PubMedCentralPubMed Rambold H, Churchland A, Selig Y, Jasmin L, Lisberger SG (2002) Partial ablations of the flocculus and ventral paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR. J Neurophysiol 87:912–924PubMedCentralPubMed
54.
go back to reference Clower DM, West RA, Lynch JC, Strick PL (2001) The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J Neurosci 21:6283–6291PubMed Clower DM, West RA, Lynch JC, Strick PL (2001) The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J Neurosci 21:6283–6291PubMed
56.
go back to reference Alessandrini M, D’Erme G, Bruno E, Napolitano B, Magrini A (2003) Vestibular compensation: analysis of postural re-arrangement as a control index for unilateral vestibular deficit. NeuroReport 14:1075–1079PubMed Alessandrini M, D’Erme G, Bruno E, Napolitano B, Magrini A (2003) Vestibular compensation: analysis of postural re-arrangement as a control index for unilateral vestibular deficit. NeuroReport 14:1075–1079PubMed
57.
go back to reference Kipping JA, Grodd W, Kumar V, Taubert M, Villringer A, Margulies DS (2013) Overlapping and parallel cerebello-cerebral networks contributing to sensorimotor control: an intrinsic functional connectivity study. Neuroimage 83:837–848CrossRefPubMed Kipping JA, Grodd W, Kumar V, Taubert M, Villringer A, Margulies DS (2013) Overlapping and parallel cerebello-cerebral networks contributing to sensorimotor control: an intrinsic functional connectivity study. Neuroimage 83:837–848CrossRefPubMed
58.
go back to reference Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H et al (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356PubMedCentralCrossRefPubMed Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H et al (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356PubMedCentralCrossRefPubMed
59.
go back to reference Dimitrova A, Kolb FP, Elles FP, Maschke M, Forsting M, Diener HC et al (2003) Cerebellar responses evoked by nociceptive leg withdrawal reflex as revealed by event-related FMRI. J Neurophysiol 90:1877–1886CrossRefPubMed Dimitrova A, Kolb FP, Elles FP, Maschke M, Forsting M, Diener HC et al (2003) Cerebellar responses evoked by nociceptive leg withdrawal reflex as revealed by event-related FMRI. J Neurophysiol 90:1877–1886CrossRefPubMed
60.
go back to reference Wang D, Buckner RL, Liu H (2013) Cerebellar asymmetry and its relation to cerebral asymmetry estimated by intrinsic functional connectivity. J Neurophysiol 109:46–57PubMedCentralCrossRefPubMed Wang D, Buckner RL, Liu H (2013) Cerebellar asymmetry and its relation to cerebral asymmetry estimated by intrinsic functional connectivity. J Neurophysiol 109:46–57PubMedCentralCrossRefPubMed
61.
go back to reference Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711CrossRefPubMed Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711CrossRefPubMed
Metadata
Title
Cerebellar metabolic involvement and its correlations with clinical parameters in vestibular neuritis
Authors
Marco Alessandrini
Alessandro Micarelli
Agostino Chiaravalloti
Matteo Candidi
Ernesto Bruno
Barbara Di Pietro
Johanna Öberg
Orazio Schillaci
Marco Pagani
Publication date
01-10-2014
Publisher
Springer Berlin Heidelberg
Published in
Journal of Neurology / Issue 10/2014
Print ISSN: 0340-5354
Electronic ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-014-7449-x

Other articles of this Issue 10/2014

Journal of Neurology 10/2014 Go to the issue