Skip to main content
Top
Published in: International Journal of Legal Medicine 4/2019

01-07-2019 | Original Article

Phase I metabolic profiling of the synthetic cannabinoids THJ-018 and THJ-2201 in human urine in comparison to human liver microsome and cytochrome P450 isoenzyme incubation

Authors: Franziska Gaunitz, Andreas Thomas, Mathias Fietzke, Florian Franz, Volker Auwärter, Mario Thevis, Katja Mercer-Chalmers-Bender

Published in: International Journal of Legal Medicine | Issue 4/2019

Login to get access

Abstract

Despite the increasing relevance of synthetic cannabinoids as one of the most important classes within “New Psychoactive Substances”, there is still a lack of knowledge concerning their metabolism in humans. Due to the extensive metabolism of synthetic cannabinoids, metabolites are necessarily the best target analytes in urine, posing additional challenges to forensic analysis. The aims of this study were to identify appropriate urinary targets indicating intake of THJ-018 or THJ-2201 as well as to elucidate the most important cytochrome P450 isoenzymes within the metabolism of THJ-018 and THJ-2201 in vitro. For this purpose, the in vitro metabolism of THJ-018 and THJ-2201 was initially established using pooled human liver microsomes. The results obtained were compared to previously published in vitro results as well as to the results of the metabolic profiles from selected recombinant cytochrome P450 isoenzymes and from 23 urine samples from forensic cases. LC-HRMS was used to conduct product ion scans and to examine the metabolite spectra. For THJ-018, 17 different metabolite groups containing 33 different metabolites and isomers were detected after microsomal incubation, with the major metabolic pathways being monohydroxylation at the pentyl chain and of the naphthyl moiety as well as dihydroxylation of both residues. For THJ-2201, 19 different metabolite groups and 46 different metabolites and isomers were observed. The major metabolic pathways were monohydroxylation at the naphthyl moiety and oxidative defluorination. Significant contribution to the in vitro metabolism of THJ-018 and THJ-2201 originated from CYP2B6, CYP2C19, CYP3A4, and CYP3A5. As several cytochrome P450 isoenzymes are involved in the metabolism of these synthetic cannabinoids, a co-consumption with other drugs is unlikely to have an impact on their metabolism.
Appendix
Available only for authorised users
Literature
4.
5.
go back to reference Chimalakonda KC, Moran CL, Kennedy PD, Endres GW, Uzieblo A, Dobrowolski PJ, Fifer EK, Lapoint J, Nelson LS, Hoffman RS, James LP, Radominska-Pandya A, Moran JH (2011) Solid-phase extraction and quantitative measurement of omega and omega-1 metabolites of JWH-018 and JWH-073 in human urine. Anal Chem 83(16):6381–6388. https://doi.org/10.1021/ac201377m CrossRefPubMedPubMedCentral Chimalakonda KC, Moran CL, Kennedy PD, Endres GW, Uzieblo A, Dobrowolski PJ, Fifer EK, Lapoint J, Nelson LS, Hoffman RS, James LP, Radominska-Pandya A, Moran JH (2011) Solid-phase extraction and quantitative measurement of omega and omega-1 metabolites of JWH-018 and JWH-073 in human urine. Anal Chem 83(16):6381–6388. https://​doi.​org/​10.​1021/​ac201377m CrossRefPubMedPubMedCentral
7.
go back to reference Hutter M, Broecker S, Kneisel S, Auwärter V (2012) Identification of the major urinary metabolites in man of seven synthetic cannabinoids of the aminoalkylindole type present as adulterants in 'herbal mixtures' using LC-MS/MS techniques. J Mass Spectrom 47(1):54–65. https://doi.org/10.1002/jms.2026 CrossRefPubMed Hutter M, Broecker S, Kneisel S, Auwärter V (2012) Identification of the major urinary metabolites in man of seven synthetic cannabinoids of the aminoalkylindole type present as adulterants in 'herbal mixtures' using LC-MS/MS techniques. J Mass Spectrom 47(1):54–65. https://​doi.​org/​10.​1002/​jms.​2026 CrossRefPubMed
9.
go back to reference Kröner L, Spencer VC (2013) A pragmatic approach to detect SPICE-metabolites in urine with HPLC-MS/MS. Toxichem Krimtech 80:375–380 Kröner L, Spencer VC (2013) A pragmatic approach to detect SPICE-metabolites in urine with HPLC-MS/MS. Toxichem Krimtech 80:375–380
11.
go back to reference Wohlfarth A, Scheidweiler KB, Castaneto M, Gandhi AS, Desrosiers NA, Klette KL, Martin TM, Huestis MA (2014) Urinary prevalence, metabolite detection rates, temporal patterns and evaluation of suitable LC-MS/MS targets to document synthetic cannabinoid intake in US military urine specimens. Clin Chem Lab Med 53(3):423–434. https://doi.org/10.1515/cclm-2014-0612 CrossRef Wohlfarth A, Scheidweiler KB, Castaneto M, Gandhi AS, Desrosiers NA, Klette KL, Martin TM, Huestis MA (2014) Urinary prevalence, metabolite detection rates, temporal patterns and evaluation of suitable LC-MS/MS targets to document synthetic cannabinoid intake in US military urine specimens. Clin Chem Lab Med 53(3):423–434. https://​doi.​org/​10.​1515/​cclm-2014-0612 CrossRef
18.
go back to reference Peters FT (2014) Recent developments in urinalysis of metabolites of new psychoactive substances using LC–MS. Bioanalysis 6(15):2083–2107CrossRef Peters FT (2014) Recent developments in urinalysis of metabolites of new psychoactive substances using LC–MS. Bioanalysis 6(15):2083–2107CrossRef
Metadata
Title
Phase I metabolic profiling of the synthetic cannabinoids THJ-018 and THJ-2201 in human urine in comparison to human liver microsome and cytochrome P450 isoenzyme incubation
Authors
Franziska Gaunitz
Andreas Thomas
Mathias Fietzke
Florian Franz
Volker Auwärter
Mario Thevis
Katja Mercer-Chalmers-Bender
Publication date
01-07-2019
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Legal Medicine / Issue 4/2019
Print ISSN: 0937-9827
Electronic ISSN: 1437-1596
DOI
https://doi.org/10.1007/s00414-018-1964-8

Other articles of this Issue 4/2019

International Journal of Legal Medicine 4/2019 Go to the issue