Skip to main content
Top
Published in: International Journal of Legal Medicine 4/2019

01-07-2019 | Original Article

Automated segmentation of the knee for age assessment in 3D MR images using convolutional neural networks

Published in: International Journal of Legal Medicine | Issue 4/2019

Login to get access

Abstract

Age assessment is used to estimate the chronological age of an individual who lacks legal documentation. Recent studies indicate that the ossification degree of the growth plates in the knee joint correlates with chronological age of adolescents and young adults. To verify this hypothesis, a high number of datasets need to be analysed. An approach which enables an automated detection and analysis of the bone structures may be necessary to handle large datasets. The purpose of this study was to develop a fully automatic 2D knee segmentation based on 3D MR images using convolutional neural networks. A total of 76 datasets were available and divided into a training set (74%), a validation set (13%) and a test set (13%). Multiple preprocessing steps were applied to correct image intensity values and to reduce the image size. Image augmentation was employed to virtually increase the dataset size for training. The proposed architecture for the segmentation task resembles the encoder-decoder model type used for the U-Net. The trained network achieved a dice similarity coefficient score of 98% compared to the manual segmentations and an intersection over union of 96%. The precision and recall of the model were balanced, and the error was only 1.2%. No overfitting was observed during training. As a proof of concept, the predicted segmentations were used for the age estimation of 145 subjects. Initial results show the potential of this approach attaining a mean absolute error of 0.48 ± 0.32 years for a test set of 14 subjects. The proposed automated segmentation can contribute to faster, reproducible and potentially more reliable age estimation in the future.
Literature
1.
go back to reference Britting-Reimer E (2015) Altersbestimmung in Deutschland und im Europäischen Vergleich Britting-Reimer E (2015) Altersbestimmung in Deutschland und im Europäischen Vergleich
2.
go back to reference Geserick G, Schmeling A (2011) Qualitätssicherung der Forensischen Altersdiagnostik bei Lebenden Personen. Rechtsmedizin 21(1):22–25CrossRef Geserick G, Schmeling A (2011) Qualitätssicherung der Forensischen Altersdiagnostik bei Lebenden Personen. Rechtsmedizin 21(1):22–25CrossRef
3.
go back to reference Kubilay S (2016) Ablauf des deutschen Asylverfahrens, tech. rep. Bundesamt für Migration und Flüchtlinge (BAMF) Kubilay S (2016) Ablauf des deutschen Asylverfahrens, tech. rep. Bundesamt für Migration und Flüchtlinge (BAMF)
4.
go back to reference European Asylum Support Office (2013) Age assessment practice in Europe European Asylum Support Office (2013) Age assessment practice in Europe
5.
go back to reference World Health Organization (2016) Ionizing radiation, health effects and protective measures World Health Organization (2016) Ionizing radiation, health effects and protective measures
6.
go back to reference Dedouit F, Auriol J, Rousseau H, Rougé D, Crubézy E, Telmon N (2012) Age assessment by magnetic resonance imaging of the knee: a preliminary study. Forensic Sci Int 217(1-3):232CrossRef Dedouit F, Auriol J, Rousseau H, Rougé D, Crubézy E, Telmon N (2012) Age assessment by magnetic resonance imaging of the knee: a preliminary study. Forensic Sci Int 217(1-3):232CrossRef
7.
go back to reference Jopp E, Schröder I, Maas R, Adam G, Püschel K (2010) Proximale Tibiaepiphyse im Magnetresonanztomogramm: Neue Möglichkeit zur Altersbestimmung bei Lebenden?. Rechtsmedizin 20:464–468CrossRef Jopp E, Schröder I, Maas R, Adam G, Püschel K (2010) Proximale Tibiaepiphyse im Magnetresonanztomogramm: Neue Möglichkeit zur Altersbestimmung bei Lebenden?. Rechtsmedizin 20:464–468CrossRef
8.
go back to reference Jopp E (2013) Die Abschlussphase des menschlichen Wachstums Longitudinale Ganzkörper- und Unterschenkelmessungen (Knemometrie) an jungen Erwachsenen zur Bestimmung des biologischen Alters und für forensische Zwecke. PhD thesis Jopp E (2013) Die Abschlussphase des menschlichen Wachstums Longitudinale Ganzkörper- und Unterschenkelmessungen (Knemometrie) an jungen Erwachsenen zur Bestimmung des biologischen Alters und für forensische Zwecke. PhD thesis
9.
go back to reference Krämer JA, Schmidt S, Jürgens KU, Lentschig M, Schmeling A, Vieth V (2014) Forensic age estimation in living individuals using 3.0T MRI of the distal femur. Int J Legal Med 128(3):509–514CrossRef Krämer JA, Schmidt S, Jürgens KU, Lentschig M, Schmeling A, Vieth V (2014) Forensic age estimation in living individuals using 3.0T MRI of the distal femur. Int J Legal Med 128(3):509–514CrossRef
10.
go back to reference Laor T, Chun GFH, Dardzinski BJ, Bean JA, Witte DP (2002) Posterior distal femoral and proximal tibial metaphyseal stripes at mr imaging in children and young adults. Radiology 224:669–674CrossRef Laor T, Chun GFH, Dardzinski BJ, Bean JA, Witte DP (2002) Posterior distal femoral and proximal tibial metaphyseal stripes at mr imaging in children and young adults. Radiology 224:669–674CrossRef
11.
go back to reference Ekizoglu O, Hocaoglu E, Inci E, Can IO, Aksoy S, Kazimoglu C (2016) Forensic age estimation via 3-T magnetic resonance imaging of ossification of the proximal tibial and distal femoral epiphyses: Use of a T2-weighted fast spin-echo technique, vol 260 Ekizoglu O, Hocaoglu E, Inci E, Can IO, Aksoy S, Kazimoglu C (2016) Forensic age estimation via 3-T magnetic resonance imaging of ossification of the proximal tibial and distal femoral epiphyses: Use of a T2-weighted fast spin-echo technique, vol 260
12.
go back to reference Fan F, Zhang K, Peng Z, Hui Cui J-h, Hu N, Hua Deng Z-h (2016) Forensic age estimation of living persons from the knee: comparison of MRI with radiographs. Forensic Sci Int 268:145–150CrossRef Fan F, Zhang K, Peng Z, Hui Cui J-h, Hu N, Hua Deng Z-h (2016) Forensic age estimation of living persons from the knee: comparison of MRI with radiographs. Forensic Sci Int 268:145–150CrossRef
13.
go back to reference Ottow C, Schulz R, Pfeiffer H, Heindel W, Schmeling A, Vieth V (2017) Forensic age estimation by magnetic resonance imaging of the knee: the definite relevance in bony fusion of the distal femoral- and the proximal tibial epiphyses using closest-to-bone T1 TSE sequence, European Radiology, pp 1–8 Ottow C, Schulz R, Pfeiffer H, Heindel W, Schmeling A, Vieth V (2017) Forensic age estimation by magnetic resonance imaging of the knee: the definite relevance in bony fusion of the distal femoral- and the proximal tibial epiphyses using closest-to-bone T1 TSE sequence, European Radiology, pp 1–8
14.
go back to reference Jiang J, Trundle P, Ren J (2010) Medical image analysis with artificial neural networks. Comput Med Imaging Graph 34:617–631CrossRef Jiang J, Trundle P, Ren J (2010) Medical image analysis with artificial neural networks. Comput Med Imaging Graph 34:617–631CrossRef
15.
go back to reference Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRef Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRef
16.
go back to reference Setiono R, Liu H (1997) Neural-network feature selector. IEEE Trans Neural Netw 8:654–662CrossRef Setiono R, Liu H (1997) Neural-network feature selector. IEEE Trans Neural Netw 8:654–662CrossRef
17.
go back to reference Dodin P, Martel-Pelletier J, Pelletier J-PP, Abram F (2011) A fully automated human knee 3D MRI bone segmentation using the ray casting technique. Med Biol Eng Comput 49(12):1413–1424CrossRef Dodin P, Martel-Pelletier J, Pelletier J-PP, Abram F (2011) A fully automated human knee 3D MRI bone segmentation using the ray casting technique. Med Biol Eng Comput 49(12):1413–1424CrossRef
18.
go back to reference Dam EB, Lillholm M, Marques J, Nielsen M (2015) Automatic segmentation of high- and low-field knee MRIs using knee image quantification with data from the osteoarthritis initiative, vol 2 Dam EB, Lillholm M, Marques J, Nielsen M (2015) Automatic segmentation of high- and low-field knee MRIs using knee image quantification with data from the osteoarthritis initiative, vol 2
19.
go back to reference Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation, vol 9351 Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation, vol 9351
20.
go back to reference Stern D, Ebner T, Bischof H, Grassegger S, Ehammer T, Urschler M (2014) Fully automatic bone age estimation from left hand MR images. Medical Image Computing and Computer-Assisted Intervention - MICCAI 2014 117(2):220–227CrossRef Stern D, Ebner T, Bischof H, Grassegger S, Ehammer T, Urschler M (2014) Fully automatic bone age estimation from left hand MR images. Medical Image Computing and Computer-Assisted Intervention - MICCAI 2014 117(2):220–227CrossRef
21.
go back to reference Stern D, Urschler M (2016) From individual hand bone age estimates to fully automated age estimation via learning-based information fusion Stern D, Urschler M (2016) From individual hand bone age estimates to fully automated age estimation via learning-based information fusion
22.
go back to reference Stern D, Kainz P, Payer C, Urschler M (2017) Multi-factorial age estimation from skeletal and dental MRI volumes. In: Wang Q, Shi Y, Suk H-I, Suzuki K (eds) Machine learning in medical imaging. Springer International Publishing, Cham, pp 61–69 Stern D, Kainz P, Payer C, Urschler M (2017) Multi-factorial age estimation from skeletal and dental MRI volumes. In: Wang Q, Shi Y, Suk H-I, Suzuki K (eds) Machine learning in medical imaging. Springer International Publishing, Cham, pp 61–69
23.
go back to reference Auf der Mauer M, Säring D, Stanczus B, Herrmann J, Groth M, Jopp-van Well E (2018) A 2-year follow-up MRI study for the evaluation of an age estimation method based on knee bone development. International Journal of Legal Medicine Auf der Mauer M, Säring D, Stanczus B, Herrmann J, Groth M, Jopp-van Well E (2018) A 2-year follow-up MRI study for the evaluation of an age estimation method based on knee bone development. International Journal of Legal Medicine
24.
go back to reference Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29:1310–1320CrossRef Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29:1310–1320CrossRef
25.
26.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems 25 (NIPS 2012) Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems 25 (NIPS 2012)
27.
go back to reference He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: The IEEE conference on computer vision and pattern recognition (CVPR), pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: The IEEE conference on computer vision and pattern recognition (CVPR), pp 770–778
28.
go back to reference Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K (2016) SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5MB model size. pp 1–13 Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K (2016) SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5MB model size. pp 1–13
29.
go back to reference Chen L-C, Papandreou G, Schroff F, Adam H (2017) Rethinking atrous convolution for semantic image segmentation Chen L-C, Papandreou G, Schroff F, Adam H (2017) Rethinking atrous convolution for semantic image segmentation
30.
go back to reference Zhao H, Shi J, Qi X, Wang X, Jia J (2016) Pyramid scene parsing network Zhao H, Shi J, Qi X, Wang X, Jia J (2016) Pyramid scene parsing network
31.
go back to reference Lin G, Milan A, Shen C, Reid I (2016) RefineNet: multi-path refinement networks for high-resolution semantic segmentation Lin G, Milan A, Shen C, Reid I (2016) RefineNet: multi-path refinement networks for high-resolution semantic segmentation
32.
go back to reference Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2016) DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. pp 1–14 Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2016) DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. pp 1–14
33.
go back to reference Nekrasov V, Ju J, Choi J (2016) Global Deconvolutional Networks for Semantic segmentation Nekrasov V, Ju J, Choi J (2016) Global Deconvolutional Networks for Semantic segmentation
34.
go back to reference Milletari F, Navab N, Ahmadi S-A (2016) V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International conference on 3D vision (3DV), IEEE, pp 565–571 Milletari F, Navab N, Ahmadi S-A (2016) V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International conference on 3D vision (3DV), IEEE, pp 565–571
35.
go back to reference Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Medical image computing and computer-assisted intervention – MICCAI 2016, vol 9901, pp 424–432 Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Medical image computing and computer-assisted intervention – MICCAI 2016, vol 9901, pp 424–432
36.
go back to reference Badrinarayanan V, Kendall A, Cipolla R (2015) SegNet: A deep convolutional encoder-decoder architecture for image segmentation. pp 1–14 Badrinarayanan V, Kendall A, Cipolla R (2015) SegNet: A deep convolutional encoder-decoder architecture for image segmentation. pp 1–14
37.
go back to reference Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10), pp 807–814 Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10), pp 807–814
38.
go back to reference Clevert D-A, Unterthiner T, Hochreiter S (2015) Fast and accurate deep network learning by exponential linear units (ELUs). pp 1–14 Clevert D-A, Unterthiner T, Hochreiter S (2015) Fast and accurate deep network learning by exponential linear units (ELUs). pp 1–14
39.
go back to reference Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15:1929–1958 Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15:1929–1958
40.
go back to reference Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. ICLR 2015, pp 1–14 Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. ICLR 2015, pp 1–14
41.
go back to reference Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of machine learning research, vol 37, pp 448–456 Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of machine learning research, vol 37, pp 448–456
42.
go back to reference Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. In: 3rd international conference for learning representations, pp 1–15 Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. In: 3rd international conference for learning representations, pp 1–15
43.
go back to reference Chollet F (2017) Deep Learning With python, vol 1. Manning Publications Chollet F (2017) Deep Learning With python, vol 1. Manning Publications
44.
go back to reference Prasoon A, Petersen K, Igel C, Lauze F, Dam E, Nielsen M (2013) Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013 8150:246–253 Prasoon A, Petersen K, Igel C, Lauze F, Dam E, Nielsen M (2013) Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013 8150:246–253
45.
go back to reference Säring D, Auf der Mauer M, Jopp E (2014) Klassifikation des Verschlussgrades der Epiphyse der proximalen Tibia zur Altersbestimmung. In: Informatik aktuell. Springer, Berlin, pp 60–65 Säring D, Auf der Mauer M, Jopp E (2014) Klassifikation des Verschlussgrades der Epiphyse der proximalen Tibia zur Altersbestimmung. In: Informatik aktuell. Springer, Berlin, pp 60–65
46.
go back to reference Saint-Martin P, Rérolle C, Dedouit F, Rousseau H, Rougé D, Telmon N (2014) Evaluation of an automatic method for forensic age estimation by magnetic resonance imaging of the distal tibial epiphysis—a preliminary study focusing on the 18-year threshold. Int J Legal Med 128:675–683CrossRef Saint-Martin P, Rérolle C, Dedouit F, Rousseau H, Rougé D, Telmon N (2014) Evaluation of an automatic method for forensic age estimation by magnetic resonance imaging of the distal tibial epiphysis—a preliminary study focusing on the 18-year threshold. Int J Legal Med 128:675–683CrossRef
47.
go back to reference Jopp E (2007) Methoden zur Alters- und Geschlechtsbestimmung auf dem Pruefstand - eine rechtsmedizinische empirische Studie. Kovac Jopp E (2007) Methoden zur Alters- und Geschlechtsbestimmung auf dem Pruefstand - eine rechtsmedizinische empirische Studie. Kovac
48.
go back to reference Krämer JA, Schmidt S, Jürgens KU, Lentschig M, Schmeling A, Vieth V (2014) The use of magnetic resonance imaging to examine ossification of the proximal tibial epiphysis for forensic age estimation in living individuals. Forensic Sci Med Pathol 10(3):306–313CrossRef Krämer JA, Schmidt S, Jürgens KU, Lentschig M, Schmeling A, Vieth V (2014) The use of magnetic resonance imaging to examine ossification of the proximal tibial epiphysis for forensic age estimation in living individuals. Forensic Sci Med Pathol 10(3):306–313CrossRef
49.
go back to reference Saint-Martin P, Rérolle C, Pucheux J, Dedouit F, Telmon N (2015) Contribution of distal femur MRI to the determination of the 18-year limit in forensic age estimation. Int J Legal Med 129(3):619–620CrossRef Saint-Martin P, Rérolle C, Pucheux J, Dedouit F, Telmon N (2015) Contribution of distal femur MRI to the determination of the 18-year limit in forensic age estimation. Int J Legal Med 129(3):619–620CrossRef
50.
go back to reference Pelt DM, Sethian JA (2018) A mixed-scale dense convolutional neural network for image analysis. Proc Natl Acad Sci 115(2):254–259CrossRef Pelt DM, Sethian JA (2018) A mixed-scale dense convolutional neural network for image analysis. Proc Natl Acad Sci 115(2):254–259CrossRef
Metadata
Title
Automated segmentation of the knee for age assessment in 3D MR images using convolutional neural networks
Publication date
01-07-2019
Published in
International Journal of Legal Medicine / Issue 4/2019
Print ISSN: 0937-9827
Electronic ISSN: 1437-1596
DOI
https://doi.org/10.1007/s00414-018-1953-y

Other articles of this Issue 4/2019

International Journal of Legal Medicine 4/2019 Go to the issue