Skip to main content
Top
Published in: International Journal of Legal Medicine 3/2017

01-05-2017 | Original Article

Automatic CT-based finite element model generation for temperature-based death time estimation: feasibility study and sensitivity analysis

Authors: Sebastian Schenkl, Holger Muggenthaler, Michael Hubig, Bodo Erdmann, Martin Weiser, Stefan Zachow, Andreas Heinrich, Felix Victor Güttler, Ulf Teichgräber, Gita Mall

Published in: International Journal of Legal Medicine | Issue 3/2017

Login to get access

Abstract

Temperature-based death time estimation is based either on simple phenomenological models of corpse cooling or on detailed physical heat transfer models. The latter are much more complex but allow a higher accuracy of death time estimation, as in principle, all relevant cooling mechanisms can be taken into account.
Here, a complete workflow for finite element-based cooling simulation is presented. The following steps are demonstrated on a CT phantom:
  • Computer tomography (CT) scan
  • Segmentation of the CT images for thermodynamically relevant features of individual geometries and compilation in a geometric computer-aided design (CAD) model
  • Conversion of the segmentation result into a finite element (FE) simulation model
  • Computation of the model cooling curve (MOD)
  • Calculation of the cooling time (CTE)
For the first time in FE-based cooling time estimation, the steps from the CT image over segmentation to FE model generation are performed semi-automatically. The cooling time calculation results are compared to cooling measurements performed on the phantoms under controlled conditions. In this context, the method is validated using a CT phantom. Some of the phantoms’ thermodynamic material parameters had to be determined via independent experiments.
Moreover, the impact of geometry and material parameter uncertainties on the estimated cooling time is investigated by a sensitivity analysis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Marshall T, Hoare F (1962) Estimating the time of death: the rectal cooling after death and its mathematical expression. J Forensic Sci 7:56–81 Marshall T, Hoare F (1962) Estimating the time of death: the rectal cooling after death and its mathematical expression. J Forensic Sci 7:56–81
5.
go back to reference Tawhai MH, Hunter P, Tschirren J, Reinhardt J, McLennan G, Hoffman EA. (2004) CT-based geometry analysis and finite element models of the human and ovine bronchial tree. J Appl Physiol 97(6):2310–21 Tawhai MH, Hunter P, Tschirren J, Reinhardt J, McLennan G, Hoffman EA. (2004) CT-based geometry analysis and finite element models of the human and ovine bronchial tree. J Appl Physiol 97(6):2310–21
7.
go back to reference Pednekar A, Bandekar AN, Kakadiaris IA, Naghavi M. (2005) Automatic Segmentation of Abdominal Fat from CT Data. Application of Computer Vision, 2005 WACV/MOTIONS ’05 Volume 1 Seventh IEEE Workshops on. pp. 308–15 Pednekar A, Bandekar AN, Kakadiaris IA, Naghavi M. (2005) Automatic Segmentation of Abdominal Fat from CT Data. Application of Computer Vision, 2005 WACV/MOTIONS ’05 Volume 1 Seventh IEEE Workshops on. pp. 308–15
8.
go back to reference Zhao B, Colville J, Kalaigian J, Curran S, Jiang L, Kijewski P, Schwartz LH (2006) Automated quantification of body fat distribution on volumetric computed tomography. J Comput Assist Tomogr 30:777–783CrossRefPubMed Zhao B, Colville J, Kalaigian J, Curran S, Jiang L, Kijewski P, Schwartz LH (2006) Automated quantification of body fat distribution on volumetric computed tomography. J Comput Assist Tomogr 30:777–783CrossRefPubMed
9.
go back to reference Ohshima S, Yamamoto S, Yamaji T et al (2008) Development of an automated 3D segmentation program for volume quantification of body fat distribution using CT. Japanese Journal of Radiological Technology 64:1177–1181CrossRefPubMed Ohshima S, Yamamoto S, Yamaji T et al (2008) Development of an automated 3D segmentation program for volume quantification of body fat distribution using CT. Japanese Journal of Radiological Technology 64:1177–1181CrossRefPubMed
15.
go back to reference Allen P, Branscheid W, Dobrowolski A, Horn P, Romvari R (2004). Schlachtkörperwertbestimmung beim Schwein - Röntgen-Computertomographie als mögliche Referenzmethode. FLEISCHWIRTSCHAFT 84(3):109–12 Allen P, Branscheid W, Dobrowolski A, Horn P, Romvari R (2004). Schlachtkörperwertbestimmung beim Schwein - Röntgen-Computertomographie als mögliche Referenzmethode. FLEISCHWIRTSCHAFT 84(3):109–12
16.
go back to reference Rogalla P, Meiri N, Hoksch B et al (1998) Low-dose spiral computed tomography for measuring abdominal fat volume and distribution in a clinical setting. Eur J Clin Nutr 52:597–602CrossRefPubMed Rogalla P, Meiri N, Hoksch B et al (1998) Low-dose spiral computed tomography for measuring abdominal fat volume and distribution in a clinical setting. Eur J Clin Nutr 52:597–602CrossRefPubMed
17.
18.
go back to reference Hepburn HR (1986) Composition and synthesis of beeswax. In: Honeybees and Wax. Springer, Berlin Heidelberg, pp 44–56CrossRef Hepburn HR (1986) Composition and synthesis of beeswax. In: Honeybees and Wax. Springer, Berlin Heidelberg, pp 44–56CrossRef
21.
go back to reference Höhne GWH, Hemminger WF, Flammersheim HJ (2003) Theoretical fundamentals of differential scanning calorimeters. In: Differential Scanning Calorimetry. Springer, Berlin Heidelberg, pp 31–63CrossRef Höhne GWH, Hemminger WF, Flammersheim HJ (2003) Theoretical fundamentals of differential scanning calorimeters. In: Differential Scanning Calorimetry. Springer, Berlin Heidelberg, pp 31–63CrossRef
22.
go back to reference Arkar C, Medved S (2005) Influence of accuracy of thermal property data of a phase change material on the result of a numerical model of a packed bed latent heat storage with spheres. Thermochim Acta 438:192–201. doi:10.1016/j.tca.2005.08.032 CrossRef Arkar C, Medved S (2005) Influence of accuracy of thermal property data of a phase change material on the result of a numerical model of a packed bed latent heat storage with spheres. Thermochim Acta 438:192–201. doi:10.​1016/​j.​tca.​2005.​08.​032 CrossRef
23.
go back to reference Kong J-Y (1982) The intrinsic thermal—conductivity of some wet proteins in relation to their hydrophobicity—analysis on gelatin gel. Agric Biol Chem 46:783–788 Kong J-Y (1982) The intrinsic thermal—conductivity of some wet proteins in relation to their hydrophobicity—analysis on gelatin gel. Agric Biol Chem 46:783–788
24.
go back to reference Timbers GE, Gochnauer TA (1982) Note on the thermal conductivity of beeswax. J Apic Res 29:232–235CrossRef Timbers GE, Gochnauer TA (1982) Note on the thermal conductivity of beeswax. J Apic Res 29:232–235CrossRef
25.
go back to reference Çengel YAG, Afshin J (2015) Heat and mass transfer. McGraw-Hill Education New York, NY Çengel YAG, Afshin J (2015) Heat and mass transfer. McGraw-Hill Education New York, NY
26.
go back to reference Stefan Zachow MZ, Hans-Christian Hege. (2007) 3D reconstruction of individual anatomy from medical image data: Segmentation and geometry processing. In: Berlin ZI, ed. CADFEM Users’ Meeting 2007 Dresden Stefan Zachow MZ, Hans-Christian Hege. (2007) 3D reconstruction of individual anatomy from medical image data: Segmentation and geometry processing. In: Berlin ZI, ed. CADFEM Users’ Meeting 2007 Dresden
27.
go back to reference Sellier K (1958) Determination of the time of death by extrapolation of the temperature decrease curve. Acta Medicinae Socialis et Legalis 11:279–302 Sellier K (1958) Determination of the time of death by extrapolation of the temperature decrease curve. Acta Medicinae Socialis et Legalis 11:279–302
29.
go back to reference Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method; volume 1: the Basis volume 2: solid and structural mechanics, 6th edn. Elsevier Ltd, Oxford Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method; volume 1: the Basis volume 2: solid and structural mechanics, 6th edn. Elsevier Ltd, Oxford
30.
go back to reference Deuflhard P, Weiser M. (2011) Numerische Mathematik 3: Adaptive Lösung partieller Differentialgleichungen. Walter de Gruyter GmbH & Co. KG, Berlin New York Deuflhard P, Weiser M. (2011) Numerische Mathematik 3: Adaptive Lösung partieller Differentialgleichungen. Walter de Gruyter GmbH & Co. KG, Berlin New York
31.
go back to reference Stalling D, Westerhoff M, Hege H (2005) Amira: a highly interactive system for visual data analysis. In: Hansen CDJ, Chris R (eds) The visualization handbook. Elsevier Butterworth-Heinemann Burlington, MA, pp 749–767CrossRef Stalling D, Westerhoff M, Hege H (2005) Amira: a highly interactive system for visual data analysis. In: Hansen CDJ, Chris R (eds) The visualization handbook. Elsevier Butterworth-Heinemann Burlington, MA, pp 749–767CrossRef
32.
go back to reference Götschel S, Weiser M, Schiela A (2012) Solving optimal control problems with the Kaskade 7 finite element toolbox. In: Dedner A, Flemisch B, Klöfkorn R (eds) Advances in DUNE: Proceedings of the DUNE User Meeting, Held in October 6th–8th 2010 in Stuttgart, Germany. Springer, Berlin Heidelberg Berlin, Heidelberg, pp 101–112CrossRef Götschel S, Weiser M, Schiela A (2012) Solving optimal control problems with the Kaskade 7 finite element toolbox. In: Dedner A, Flemisch B, Klöfkorn R (eds) Advances in DUNE: Proceedings of the DUNE User Meeting, Held in October 6th–8th 2010 in Stuttgart, Germany. Springer, Berlin Heidelberg Berlin, Heidelberg, pp 101–112CrossRef
33.
go back to reference Handels H. (2009) Grundlagen diagnose- und therapieunterstützender Bildverarbeitungssysteme. Medizinische Bildverarbeitung. Vieweg+Teubner. pp. 49–69 Handels H. (2009) Grundlagen diagnose- und therapieunterstützender Bildverarbeitungssysteme. Medizinische Bildverarbeitung. Vieweg+Teubner. pp. 49–69
34.
go back to reference Handels H. (2009) Segmentierung medizinischer Bilddaten. Medizinische Bildverarbeitung. Vieweg+Teubner. pp. 95–156 Handels H. (2009) Segmentierung medizinischer Bilddaten. Medizinische Bildverarbeitung. Vieweg+Teubner. pp. 95–156
35.
go back to reference Alkadhi H, Frauenfelder T. (2011) Polytrauma. Wie funktioniert CT? Springer Berlin Heidelberg. pp. 153–62 Alkadhi H, Frauenfelder T. (2011) Polytrauma. Wie funktioniert CT? Springer Berlin Heidelberg. pp. 153–62
37.
go back to reference Hofer M. (2010) CT-Kursbuch. Didamed-Verlag Düsseldorf Hofer M. (2010) CT-Kursbuch. Didamed-Verlag Düsseldorf
38.
go back to reference Fullerton GD (1980) Fundamentals of CT tissue characterization. In: Fullerton GD, Zagzebski JA (eds) Medical physics of CT and ultrasound. American Association of Physicists in Medicine Monograph 6, AAPM New York, NY, pp 125–162 Fullerton GD (1980) Fundamentals of CT tissue characterization. In: Fullerton GD, Zagzebski JA (eds) Medical physics of CT and ultrasound. American Association of Physicists in Medicine Monograph 6, AAPM New York, NY, pp 125–162
39.
go back to reference Duck FA (1990) Physical properties of tissue. Academic, London Duck FA (1990) Physical properties of tissue. Academic, London
40.
go back to reference Washburn EW, West CJ (1986) International critical tables of numerical data, physics, chemistry and technology. University Microfilm International, Cornell University Washburn EW, West CJ (1986) International critical tables of numerical data, physics, chemistry and technology. University Microfilm International, Cornell University
44.
go back to reference Mohsenin NN (1980) Thermal properties of foods and agricultural materials. Gordon and Breach New York, NY Mohsenin NN (1980) Thermal properties of foods and agricultural materials. Gordon and Breach New York, NY
45.
go back to reference Park JB (2007) Biomaterials. Springer Science New York, NY Park JB (2007) Biomaterials. Springer Science New York, NY
46.
go back to reference Zilske M, Lamecker H, Zachow S (2008) Adaptive remeshing of non-manifold surfaces. Eurographics 27 Zilske M, Lamecker H, Zachow S (2008) Adaptive remeshing of non-manifold surfaces. Eurographics 27
Metadata
Title
Automatic CT-based finite element model generation for temperature-based death time estimation: feasibility study and sensitivity analysis
Authors
Sebastian Schenkl
Holger Muggenthaler
Michael Hubig
Bodo Erdmann
Martin Weiser
Stefan Zachow
Andreas Heinrich
Felix Victor Güttler
Ulf Teichgräber
Gita Mall
Publication date
01-05-2017
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Legal Medicine / Issue 3/2017
Print ISSN: 0937-9827
Electronic ISSN: 1437-1596
DOI
https://doi.org/10.1007/s00414-016-1523-0

Other articles of this Issue 3/2017

International Journal of Legal Medicine 3/2017 Go to the issue