Skip to main content
Top
Published in: Lung 5/2018

01-10-2018 | ASTHMA

Transient Receptor Potential Channels and Chronic Airway Inflammatory Diseases: A Comprehensive Review

Authors: Yang Xia, Lexin Xia, Lingyun Lou, Rui Jin, Huahao Shen, Wen Li

Published in: Lung | Issue 5/2018

Login to get access

Abstract

Chronic airway inflammatory diseases remain a major problem worldwide, such that there is a need for additional therapeutic targets and novel drugs. Transient receptor potential (TRP) channels are a group of non-selective cation channels expressed throughout the body that are regulated by various stimuli. TRP channels have been identified in numerous cell types in the respiratory tract, including sensory neurons, airway epithelial cells, airway smooth muscle cells, and fibroblasts. Different types of TRP channels induce cough in sensory neurons via the vagus nerve. Permeability and cytokine production are also regulated by TRP channels in airway epithelial cells, and these channels also contribute to the modulation of bronchoconstriction. TRP channels may cooperate with other TRP channels, or act in concert with calcium-dependent potassium channels and calcium-activated chloride channel. Hence, TRP channels could be the potential therapeutic targets for chronic airway inflammatory diseases. In this review, we aim to discuss the expression profiles and physiological functions of TRP channels in the airway, and the roles they play in chronic airway inflammatory diseases.
Literature
1.
go back to reference Cosens DJ, Manning A (1969) Abnormal electroretinogram from a Drosophila mutant. Nature 224(5216):285–287CrossRefPubMed Cosens DJ, Manning A (1969) Abnormal electroretinogram from a Drosophila mutant. Nature 224(5216):285–287CrossRefPubMed
5.
go back to reference Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112(6):819–829CrossRefPubMed Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112(6):819–829CrossRefPubMed
12.
go back to reference DeFalco J, Duncton MA, Emerling D (2011) TRPM8 biology and medicinal chemistry. Curr Top Med Chem 11(17):2237–2252CrossRefPubMed DeFalco J, Duncton MA, Emerling D (2011) TRPM8 biology and medicinal chemistry. Curr Top Med Chem 11(17):2237–2252CrossRefPubMed
15.
go back to reference Beech DJ, Xu SZ, McHugh D, Flemming R (2003) TRPC1 store-operated cationic channel subunit. Cell Calcium 33(5–6):433–440CrossRefPubMed Beech DJ, Xu SZ, McHugh D, Flemming R (2003) TRPC1 store-operated cationic channel subunit. Cell Calcium 33(5–6):433–440CrossRefPubMed
17.
go back to reference Doherty MJ, Mister R, Pearson MG, Calverley PM (2000) Capsaicin responsiveness and cough in asthma and chronic obstructive pulmonary disease. Thorax 55(8):643–649CrossRefPubMedPubMedCentral Doherty MJ, Mister R, Pearson MG, Calverley PM (2000) Capsaicin responsiveness and cough in asthma and chronic obstructive pulmonary disease. Thorax 55(8):643–649CrossRefPubMedPubMedCentral
18.
go back to reference O’Connell F, Thomas VE, Studham JM, Pride NB, Fuller RW (1996) Capsaicin cough sensitivity increases during upper respiratory infection. Respir Med 90(5):279–286CrossRefPubMed O’Connell F, Thomas VE, Studham JM, Pride NB, Fuller RW (1996) Capsaicin cough sensitivity increases during upper respiratory infection. Respir Med 90(5):279–286CrossRefPubMed
23.
go back to reference Maher MP, Bhattacharya A, Ao H, Swanson N, Wu NT, Freedman J, Kansagara M, Scott B, Li DH, Eckert WA 3rd, Liu Y, Sepassi K, Rizzolio M, Fitzgerald A, Liu J, Branstetter BJ, Rech JC, Lebsack AD, Breitenbucher JG, Wickenden AD, Chaplan SR (2011) Characterization of 2-(2,6-dichloro-benzyl)-thiazolo[5,4-d]pyrimidin-7-yl]-(4-trifluoromethyl-phenyl)-amine (JNJ-39729209) as a novel TRPV1 antagonist. Eur J Pharmacol 663(1–3):40–50. https://doi.org/10.1016/j.ejphar.2011.05.001 CrossRefPubMed Maher MP, Bhattacharya A, Ao H, Swanson N, Wu NT, Freedman J, Kansagara M, Scott B, Li DH, Eckert WA 3rd, Liu Y, Sepassi K, Rizzolio M, Fitzgerald A, Liu J, Branstetter BJ, Rech JC, Lebsack AD, Breitenbucher JG, Wickenden AD, Chaplan SR (2011) Characterization of 2-(2,6-dichloro-benzyl)-thiazolo[5,4-d]pyrimidin-7-yl]-(4-trifluoromethyl-phenyl)-amine (JNJ-39729209) as a novel TRPV1 antagonist. Eur J Pharmacol 663(1–3):40–50. https://​doi.​org/​10.​1016/​j.​ejphar.​2011.​05.​001 CrossRefPubMed
25.
go back to reference Bhattacharya A, Scott BP, Nasser N, Ao H, Maher MP, Dubin AE, Swanson DM, Shankley NP, Wickenden AD, Chaplan SR (2007) Pharmacology and antitussive efficacy of 4-(3-trifluoromethyl-pyridin-2-yl)-piperazine-1-carboxylic acid (5-trifluoromethyl-pyridin-2-yl)-amide (JNJ17203212), a transient receptor potential vanilloid 1 antagonist in guinea pigs. J Pharmacol Exp Ther 323(2):665–674. https://doi.org/10.1124/jpet.107.127258 CrossRefPubMed Bhattacharya A, Scott BP, Nasser N, Ao H, Maher MP, Dubin AE, Swanson DM, Shankley NP, Wickenden AD, Chaplan SR (2007) Pharmacology and antitussive efficacy of 4-(3-trifluoromethyl-pyridin-2-yl)-piperazine-1-carboxylic acid (5-trifluoromethyl-pyridin-2-yl)-amide (JNJ17203212), a transient receptor potential vanilloid 1 antagonist in guinea pigs. J Pharmacol Exp Ther 323(2):665–674. https://​doi.​org/​10.​1124/​jpet.​107.​127258 CrossRefPubMed
27.
go back to reference Liedtke W, Choe Y, Marti-Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM, Heller S (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103(3):525–535CrossRefPubMedPubMedCentral Liedtke W, Choe Y, Marti-Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM, Heller S (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103(3):525–535CrossRefPubMedPubMedCentral
29.
go back to reference Guler AD, Lee H, Iida T, Shimizu I, Tominaga M, Caterina M (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22(15):6408–6414. doi:20026679CrossRefPubMedPubMedCentral Guler AD, Lee H, Iida T, Shimizu I, Tominaga M, Caterina M (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22(15):6408–6414. doi:20026679CrossRefPubMedPubMedCentral
31.
go back to reference Fernandez-Fernandez JM, Andrade YN, Arniges M, Fernandes J, Plata C, Rubio-Moscardo F, Vazquez E, Valverde MA (2008) Functional coupling of TRPV4 cationic channel and large conductance, calcium-dependent potassium channel in human bronchial epithelial cell lines. Pflugers Arch 457(1):149–159. https://doi.org/10.1007/s00424-008-0516-3 CrossRefPubMed Fernandez-Fernandez JM, Andrade YN, Arniges M, Fernandes J, Plata C, Rubio-Moscardo F, Vazquez E, Valverde MA (2008) Functional coupling of TRPV4 cationic channel and large conductance, calcium-dependent potassium channel in human bronchial epithelial cell lines. Pflugers Arch 457(1):149–159. https://​doi.​org/​10.​1007/​s00424-008-0516-3 CrossRefPubMed
35.
go back to reference Jaquemar D, Schenker T, Trueb B (1999) An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts. J Biol Chem 274(11):7325–7333CrossRefPubMed Jaquemar D, Schenker T, Trueb B (1999) An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts. J Biol Chem 274(11):7325–7333CrossRefPubMed
37.
40.
go back to reference Yang H, Li S (2016) Transient receptor potential ankyrin 1 (TRPA1) channel and neurogenic inflammation in pathogenesis of asthma. Med Sci Monit 22:2917–2923CrossRefPubMedPubMedCentral Yang H, Li S (2016) Transient receptor potential ankyrin 1 (TRPA1) channel and neurogenic inflammation in pathogenesis of asthma. Med Sci Monit 22:2917–2923CrossRefPubMedPubMedCentral
64.
go back to reference Ricciardolo FL (2001) Mechanisms of citric acid-induced bronchoconstriction. Am J Med 111(Suppl 8A):18S–24SCrossRefPubMed Ricciardolo FL (2001) Mechanisms of citric acid-induced bronchoconstriction. Am J Med 111(Suppl 8A):18S–24SCrossRefPubMed
65.
go back to reference Bolser DC, Aziz SM, Chapman RW (1991) Ruthenium red decreases capsaicin and citric acid-induced cough in guinea pigs. Neurosci Lett 126(2):131–133CrossRefPubMed Bolser DC, Aziz SM, Chapman RW (1991) Ruthenium red decreases capsaicin and citric acid-induced cough in guinea pigs. Neurosci Lett 126(2):131–133CrossRefPubMed
77.
go back to reference McGarvey LP, Butler CA, Stokesberry S, Polley L, McQuaid S, Abdullah H, Ashraf S, McGahon MK, Curtis TM, Arron J, Choy D, Warke TJ, Bradding P, Ennis M, Zholos A, Costello RW, Heaney LG (2014) Increased expression of bronchial epithelial transient receptor potential vanilloid 1 channels in patients with severe asthma. J Allergy Clin Immunol 133(3):704–712. https://doi.org/10.1016/j.jaci.2013.09.016 CrossRefPubMed McGarvey LP, Butler CA, Stokesberry S, Polley L, McQuaid S, Abdullah H, Ashraf S, McGahon MK, Curtis TM, Arron J, Choy D, Warke TJ, Bradding P, Ennis M, Zholos A, Costello RW, Heaney LG (2014) Increased expression of bronchial epithelial transient receptor potential vanilloid 1 channels in patients with severe asthma. J Allergy Clin Immunol 133(3):704–712. https://​doi.​org/​10.​1016/​j.​jaci.​2013.​09.​016 CrossRefPubMed
80.
go back to reference Tsuji F, Murai M, Oki K, Inoue H, Sasano M, Tanaka H, Inagaki N, Aono H (2010) Effects of SA13353, a transient receptor potential vanilloid 1 agonist, on leukocyte infiltration in lipopolysaccharide-induced acute lung injury and ovalbumin-induced allergic airway inflammation. J Pharmacol Sci 112(4):487–490CrossRefPubMed Tsuji F, Murai M, Oki K, Inoue H, Sasano M, Tanaka H, Inagaki N, Aono H (2010) Effects of SA13353, a transient receptor potential vanilloid 1 agonist, on leukocyte infiltration in lipopolysaccharide-induced acute lung injury and ovalbumin-induced allergic airway inflammation. J Pharmacol Sci 112(4):487–490CrossRefPubMed
83.
go back to reference Henry CO, Dalloneau E, Perez-Berezo MT, Plata C, Wu Y, Guillon A, Morello E, Aimar RF, Potier-Cartereau M, Esnard F, Coraux C, Bornchen C, Kiefmann R, Vandier C, Touqui L, Valverde MA, Cenac N, Si-Tahar M (2016) In vitro and in vivo evidence for an inflammatory role of the calcium channel TRPV4 in lung epithelium: potential involvement in cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 311(3):L664–L675. https://doi.org/10.1152/ajplung.00442.2015 CrossRefPubMed Henry CO, Dalloneau E, Perez-Berezo MT, Plata C, Wu Y, Guillon A, Morello E, Aimar RF, Potier-Cartereau M, Esnard F, Coraux C, Bornchen C, Kiefmann R, Vandier C, Touqui L, Valverde MA, Cenac N, Si-Tahar M (2016) In vitro and in vivo evidence for an inflammatory role of the calcium channel TRPV4 in lung epithelium: potential involvement in cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 311(3):L664–L675. https://​doi.​org/​10.​1152/​ajplung.​00442.​2015 CrossRefPubMed
84.
go back to reference Prandini P, De Logu F, Fusi C, Provezza L, Nassini R, Montagner G, Materazzi S, Munari S, Gilioli E, Bezzerri V, Finotti A, Lampronti I, Tamanini A, Dechecchi MC, Lippi G, Ribeiro CM, Rimessi A, Pinton P, Gambari R, Geppetti P, Cabrini G (2016) Transient receptor potential ankyrin 1 channels modulate inflammatory response in respiratory cells from patients with cystic fibrosis. Am J Respir Cell Mol Biol 55(5):645–656. https://doi.org/10.1165/rcmb.2016-0089OC CrossRefPubMed Prandini P, De Logu F, Fusi C, Provezza L, Nassini R, Montagner G, Materazzi S, Munari S, Gilioli E, Bezzerri V, Finotti A, Lampronti I, Tamanini A, Dechecchi MC, Lippi G, Ribeiro CM, Rimessi A, Pinton P, Gambari R, Geppetti P, Cabrini G (2016) Transient receptor potential ankyrin 1 channels modulate inflammatory response in respiratory cells from patients with cystic fibrosis. Am J Respir Cell Mol Biol 55(5):645–656. https://​doi.​org/​10.​1165/​rcmb.​2016-0089OC CrossRefPubMed
89.
93.
go back to reference Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE (2001) TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29(3):645–655CrossRefPubMed Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE (2001) TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29(3):645–655CrossRefPubMed
95.
go back to reference Yuan JP, Kiselyov K, Shin DM, Chen J, Shcheynikov N, Kang SH, Dehoff MH, Schwarz MK, Seeburg PH, Muallem S, Worley PF (2003) Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell 114(6):777–789CrossRefPubMed Yuan JP, Kiselyov K, Shin DM, Chen J, Shcheynikov N, Kang SH, Dehoff MH, Schwarz MK, Seeburg PH, Muallem S, Worley PF (2003) Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell 114(6):777–789CrossRefPubMed
Metadata
Title
Transient Receptor Potential Channels and Chronic Airway Inflammatory Diseases: A Comprehensive Review
Authors
Yang Xia
Lexin Xia
Lingyun Lou
Rui Jin
Huahao Shen
Wen Li
Publication date
01-10-2018
Publisher
Springer US
Published in
Lung / Issue 5/2018
Print ISSN: 0341-2040
Electronic ISSN: 1432-1750
DOI
https://doi.org/10.1007/s00408-018-0145-3

Other articles of this Issue 5/2018

Lung 5/2018 Go to the issue