Skip to main content
Top
Published in: Lung 4/2005

01-08-2005

Different Effects of Growth Factors on Proliferation and Matrix Production of Normal and Fibrotic Human Lung Fibroblasts

Authors: M. Hetzel, M. Bachem, D. Anders, G. Trischler, M. Faehling

Published in: Lung | Issue 4/2005

Login to get access

Abstract

Objectives and methods: In idiopathic pulmonary fibrosis (IPF), proliferation of fibroblasts and increased matrix deposition result in pulmonary damage and respiratory insufficiency. We cultured human fibroblasts from lung biopsies of healthy adults and of three patients with IPF (histologically usual interstital pneumonitis, UIP) in order to compare proliferation ([3H]thymidine incorporation, cell count) and matrix protein expression (immune fluorescence, quantification of fibronectin synthesis using time-resolved immune fluorescence) of normal and UIP fibroblasts in response to various growth factors. Findings: The growth factors platelet-derived growth factor-BB (PDGF), epidermal growth factor (EGF), insulin growth factor-1 (IGF-1), insulin-like growth factor-2 (IGF-2), tumor necrosis factor α (TNFα), Transforming growth factor-β (TGFβ1), and fibroblast growth factor-2 (FGF-2) stimulate proliferation of normal lung fibroblasts significantly more than proliferation of UIP fibroblasts. Immunofluorescence reveals extensive expression of collagen I, collagen III, and fibronectin induced by serum, TGFβ1, and TNFα. This expression is more pronounced in UIP fibroblasts than in normal fibroblasts. Quantification of fibronectin synthesis reveals an enhanced fibronectin synthesis by UIP fibroblasts in response to PDGF, EGF, IGF-1, IGF-2, TNFα, TGFβ1, and FGF-2). Conclusions: Fibroblasts from normal and UIP lungs differ in their response to growth factors: Whereas normal fibroblasts show a predominantly proliferative response, UIP fibroblasts show an enhanced synthetic activity. Different fibroblast responses may contribute to progressive pulmonary fibrosis in patients with UIP.
Literature
1.
go back to reference British Thoracic Society, Standards of Care Committee (1999) The diagnosis, assessment and treatment of diffuse parenchymal lung disease in adults Thorax 54:S1–S28 British Thoracic Society, Standards of Care Committee (1999) The diagnosis, assessment and treatment of diffuse parenchymal lung disease in adults Thorax 54:S1–S28
4.
go back to reference King TE, Costabel U, Cordier J-F, DoPico GA, du Bois KM, Lynch JP, Myers J, Panos R, Raghu G, Schwartz D, Smith CM (2000) Idiopathic pulmonary fibrosis: diagnosis and treatment International consensus statement. Am J Resp Crit Care Med 161:646–664PubMed King TE, Costabel U, Cordier J-F, DoPico GA, du Bois KM, Lynch JP, Myers J, Panos R, Raghu G, Schwartz D, Smith CM (2000) Idiopathic pulmonary fibrosis: diagnosis and treatment International consensus statement. Am J Resp Crit Care Med 161:646–664PubMed
5.
go back to reference Katzenstein AL, Myers JL (1998) Idiopathic pulmonary fibrosis: clinical relevance of pathologic classification Am J Respir Crit Care Med 157:1301–1315PubMed Katzenstein AL, Myers JL (1998) Idiopathic pulmonary fibrosis: clinical relevance of pathologic classification Am J Respir Crit Care Med 157:1301–1315PubMed
6.
go back to reference Selman M, King TE, Pardo A (2001) Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy Ann Intern Med 134: 136–151PubMed Selman M, King TE, Pardo A (2001) Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy Ann Intern Med 134: 136–151PubMed
7.
go back to reference Zhang K, Rekheter MD, Gordon D, Phan SH (1994) Myofibroblasts and their repair role in lung collagen gene expression during pulmonary fibrosis Am J Pathol 145:114–125PubMed Zhang K, Rekheter MD, Gordon D, Phan SH (1994) Myofibroblasts and their repair role in lung collagen gene expression during pulmonary fibrosis Am J Pathol 145:114–125PubMed
8.
go back to reference Serini G, Gabbiani G (1999) Mechanism of myofibroblast activity and phenotype modulation Exp Cell Res 250:273–283CrossRefPubMed Serini G, Gabbiani G (1999) Mechanism of myofibroblast activity and phenotype modulation Exp Cell Res 250:273–283CrossRefPubMed
9.
go back to reference Vaillant P, Menard O, Vignaud JM, Martinet N, Martinet Y (1996) The role of cytokines in human lung fibrosis Monaldi Arch Chest Dis 51:145–152PubMed Vaillant P, Menard O, Vignaud JM, Martinet N, Martinet Y (1996) The role of cytokines in human lung fibrosis Monaldi Arch Chest Dis 51:145–152PubMed
10.
go back to reference Zhang K, Phan SH (1996) Cytokines and pulmonary fibrosis Biol Signals 5:232–239PubMed Zhang K, Phan SH (1996) Cytokines and pulmonary fibrosis Biol Signals 5:232–239PubMed
11.
go back to reference Pantelidis P, Fanning GC, Wells AU, Welsh KI, Du Bois RM (2001) Analysis of TNFα, TNF receptor II, and IL-6 polymorphisms in patients with idiopathic pulmonary fibrosis Am J Respir Crit Care Med 163:1432–1436PubMed Pantelidis P, Fanning GC, Wells AU, Welsh KI, Du Bois RM (2001) Analysis of TNFα, TNF receptor II, and IL-6 polymorphisms in patients with idiopathic pulmonary fibrosis Am J Respir Crit Care Med 163:1432–1436PubMed
12.
go back to reference Blobe GC, Schiemann WP, Lodish HF (2000) Role of transforming growth factor beta in human disease N Engl J Med 342:1350–1358CrossRefPubMed Blobe GC, Schiemann WP, Lodish HF (2000) Role of transforming growth factor beta in human disease N Engl J Med 342:1350–1358CrossRefPubMed
13.
go back to reference Sime PJ, Xing Z, Graham FL, Csaky KG, Gauldie J (1997) Adenovector-mediated gene transfer of active transforming growth factor-β1 induces prolonged severe fibrosis in rat lung J Clin Invest 100:768–776PubMed Sime PJ, Xing Z, Graham FL, Csaky KG, Gauldie J (1997) Adenovector-mediated gene transfer of active transforming growth factor-β1 induces prolonged severe fibrosis in rat lung J Clin Invest 100:768–776PubMed
14.
go back to reference Krein PM, Winston BW (2002) Roles of insulin-like growth factor I and transforming growth factor-beta in fibrotic lung disease Chest 122:289S–293SCrossRefPubMed Krein PM, Winston BW (2002) Roles of insulin-like growth factor I and transforming growth factor-beta in fibrotic lung disease Chest 122:289S–293SCrossRefPubMed
15.
go back to reference Piguet PF, Ribaux C, Karpuz V, Grau GE, Kapanci Y. (1993) Expression and localization of tumor necrosis factor-alpha and its mRNA in idiopathic pulmonary fibrosis Am J Pathol 143:654–655 Piguet PF, Ribaux C, Karpuz V, Grau GE, Kapanci Y. (1993) Expression and localization of tumor necrosis factor-alpha and its mRNA in idiopathic pulmonary fibrosis Am J Pathol 143:654–655
16.
go back to reference Lasky JA, Ortiz LA (2001) Antifibrotic therapy for the treatment of pulmonary fibrosis Am J Med Sci 322:213–221CrossRefPubMed Lasky JA, Ortiz LA (2001) Antifibrotic therapy for the treatment of pulmonary fibrosis Am J Med Sci 322:213–221CrossRefPubMed
17.
go back to reference Elias JA, Rossmann MD, Daniele RP (1982) Inhibition of human lung fibroblast growth by mononuclear cells Am Rev Respir Dis 125:701–705PubMed Elias JA, Rossmann MD, Daniele RP (1982) Inhibition of human lung fibroblast growth by mononuclear cells Am Rev Respir Dis 125:701–705PubMed
18.
go back to reference Raghu G, Chen YV, Rusch V, Rabinovitch PS (1988) Differential proliferation of fibroblasts cultured from normal and fibrotic lungs Am Rev Respir Dis 138:703–708PubMed Raghu G, Chen YV, Rusch V, Rabinovitch PS (1988) Differential proliferation of fibroblasts cultured from normal and fibrotic lungs Am Rev Respir Dis 138:703–708PubMed
19.
go back to reference Raghu G, Masta S, Meyers D, Narayanan AS (1989) Collagen Synthesis by normal and fibrotic human lung fibroblasts and the effect of TGFβ Am Rev Respir Dis 140:95–100PubMed Raghu G, Masta S, Meyers D, Narayanan AS (1989) Collagen Synthesis by normal and fibrotic human lung fibroblasts and the effect of TGFβ Am Rev Respir Dis 140:95–100PubMed
20.
go back to reference Jordana M, Schulman J, McSharry C, Irving LB, Newhouse MT, Jordana G, Gauldie J (1988) Heterogeneous proliferative characteristics of human adult lung fibroblast lines and clonally derived fibroblasts from control and fibrotic tissue Am Rev Respir Dis 137:579–584PubMed Jordana M, Schulman J, McSharry C, Irving LB, Newhouse MT, Jordana G, Gauldie J (1988) Heterogeneous proliferative characteristics of human adult lung fibroblast lines and clonally derived fibroblasts from control and fibrotic tissue Am Rev Respir Dis 137:579–584PubMed
21.
go back to reference Naragyabab AS, Whithey J, Souza A, Raghu G (1992) Effect of gamma-interferon on collagen synthesis by normal and fibrotic human lung fibroblasts Chest 101:1326–1331PubMed Naragyabab AS, Whithey J, Souza A, Raghu G (1992) Effect of gamma-interferon on collagen synthesis by normal and fibrotic human lung fibroblasts Chest 101:1326–1331PubMed
22.
go back to reference Pardo A, Selman M, Ramirez R, Ramos C, Montano M, Stricklin G, raghu G (1992): Production of collagenase and tissue inhibitor of metalloproteinases by fibroblasts derived from normal and fibrotic human lungs Chest 102:1085–1089PubMed Pardo A, Selman M, Ramirez R, Ramos C, Montano M, Stricklin G, raghu G (1992): Production of collagenase and tissue inhibitor of metalloproteinases by fibroblasts derived from normal and fibrotic human lungs Chest 102:1085–1089PubMed
23.
go back to reference Labarca C, Paigen K (1980) A simple, rapid, and sensitive DNA assay procedure. Anal Biochem 102:344–352CrossRefPubMed Labarca C, Paigen K (1980) A simple, rapid, and sensitive DNA assay procedure. Anal Biochem 102:344–352CrossRefPubMed
24.
go back to reference Bachem MG, Schneider E, GroB H, Weidenbach H, Schmid RM, Menke A, Siech M, Beger H, Grunert A, Adler G (1998) Identification, culture, and characterization of pancreatic stellate cells in rats and humans Gastroenterology 115:421–432PubMed Bachem MG, Schneider E, GroB H, Weidenbach H, Schmid RM, Menke A, Siech M, Beger H, Grunert A, Adler G (1998) Identification, culture, and characterization of pancreatic stellate cells in rats and humans Gastroenterology 115:421–432PubMed
25.
go back to reference Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G (1993) TGFβ1 induces αSMC actin expression in granulation tissue and in quiescent and growing fibroblasts J Cell Biol 122:103–111CrossRefPubMed Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G (1993) TGFβ1 induces αSMC actin expression in granulation tissue and in quiescent and growing fibroblasts J Cell Biol 122:103–111CrossRefPubMed
26.
go back to reference Hashimoto S, Gon Y, Takeshita I, Matsumoto K, Maruokoa S, Horie T (2001) Transforming growth factor-β1 induces phenotypic modulation of human lung fibroblasts to myofibroblast through a c-jun-NH2-terminal kinase-dependent pathway Am J Respir Crit Care Med 163:152–157PubMed Hashimoto S, Gon Y, Takeshita I, Matsumoto K, Maruokoa S, Horie T (2001) Transforming growth factor-β1 induces phenotypic modulation of human lung fibroblasts to myofibroblast through a c-jun-NH2-terminal kinase-dependent pathway Am J Respir Crit Care Med 163:152–157PubMed
27.
go back to reference Hautmann MB, Adam PJ, Owens GK (1999) Similarities and differences in SM α-actin induction by TGFβ in SM vs nonSMCs Arterioscl Thromb Vasc Biol 19:2049–2058PubMed Hautmann MB, Adam PJ, Owens GK (1999) Similarities and differences in SM α-actin induction by TGFβ in SM vs nonSMCs Arterioscl Thromb Vasc Biol 19:2049–2058PubMed
28.
go back to reference Smith JD, Bryant SR, Couper LL, Vary CPH, Gotwals PJ, Koteliansky VE (1999) Soluble TGFβ2 receptor inhibits negative remodeling, fibroblast transdifferentiation and intimal lesion formation but not endothelial cell growth Circ Res 84:1212–1222PubMed Smith JD, Bryant SR, Couper LL, Vary CPH, Gotwals PJ, Koteliansky VE (1999) Soluble TGFβ2 receptor inhibits negative remodeling, fibroblast transdifferentiation and intimal lesion formation but not endothelial cell growth Circ Res 84:1212–1222PubMed
29.
go back to reference Zhang K, Rekhter MD, Gordon D, Phan SH (1994) Myofibroblasts and their role in lung collagen gene expression during pulmonary fibrosis Am J Pathol 145:114–125PubMed Zhang K, Rekhter MD, Gordon D, Phan SH (1994) Myofibroblasts and their role in lung collagen gene expression during pulmonary fibrosis Am J Pathol 145:114–125PubMed
30.
go back to reference Gauldie J, Sime PJ, Xing Z, Marr B, Tremblay GM (1999) TGFβ gene transfer to the lung induces myofibroblast presence and pulmonary fibrosis Curr Top Pathol 93:35–45PubMed Gauldie J, Sime PJ, Xing Z, Marr B, Tremblay GM (1999) TGFβ gene transfer to the lung induces myofibroblast presence and pulmonary fibrosis Curr Top Pathol 93:35–45PubMed
31.
go back to reference Sheppard MN, Harrison NK (1992) Lung injury, inflammatory mediators, and fibroblast activation in fibrosing alveolitis. Thorax 47:1064–1074PubMed Sheppard MN, Harrison NK (1992) Lung injury, inflammatory mediators, and fibroblast activation in fibrosing alveolitis. Thorax 47:1064–1074PubMed
32.
go back to reference Phan SH (1996) Role of the myofibroblast in pulmonary fibrosis Kidney Int 49:S46–S48 Phan SH (1996) Role of the myofibroblast in pulmonary fibrosis Kidney Int 49:S46–S48
33.
go back to reference Rojas-Valencia L, Montiel F, Montano M, Selman M, Pardo A (1995) Expression of a 2.8-kb PDGF-B/c-sis transcript and synthesis of PDGF-like protein by human lung fibroblasts Chest 108:240–245PubMed Rojas-Valencia L, Montiel F, Montano M, Selman M, Pardo A (1995) Expression of a 2.8-kb PDGF-B/c-sis transcript and synthesis of PDGF-like protein by human lung fibroblasts Chest 108:240–245PubMed
34.
go back to reference Stewart AG, Tomlinson PR, Femandes DJ, Wilson JW, Harris T (1995) Tumor necrosis factor apha modulates mitogenic responses of human cultured airway smooth muscle Am J Respir Cell Mol Biol 12:110–119PubMed Stewart AG, Tomlinson PR, Femandes DJ, Wilson JW, Harris T (1995) Tumor necrosis factor apha modulates mitogenic responses of human cultured airway smooth muscle Am J Respir Cell Mol Biol 12:110–119PubMed
35.
go back to reference Strutz F, Zeisberg M, Renziehausen A, Raschke B, Becker V, van Kooten C (2001) TGFβ induces human renal fibroblast proliferation via induction of bFGF Kidney Int 59:579–592CrossRefPubMed Strutz F, Zeisberg M, Renziehausen A, Raschke B, Becker V, van Kooten C (2001) TGFβ induces human renal fibroblast proliferation via induction of bFGF Kidney Int 59:579–592CrossRefPubMed
36.
go back to reference Gunther A, Ruppert C, Schmidt R (2001) Surfactant alteration and replacement in adult respiratory distress syndrome Respir Res 2:353–364CrossRefPubMed Gunther A, Ruppert C, Schmidt R (2001) Surfactant alteration and replacement in adult respiratory distress syndrome Respir Res 2:353–364CrossRefPubMed
37.
go back to reference Broekelmann TJ, Limper AH, Colby TV, McDonald JA (1991) Transforming growth factor β1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis Proc Natl Acad Sci USA 88:6642–6646PubMed Broekelmann TJ, Limper AH, Colby TV, McDonald JA (1991) Transforming growth factor β1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis Proc Natl Acad Sci USA 88:6642–6646PubMed
39.
go back to reference Ramos C, Montano M, Garcia-Alvarez J, Ruiz V, Uhal BD, Selman M, Pardo A (2001) Fibroblasts from idiopathic pulmonary fibrosis and normal lungs differ in growth rate, apoptosis, and tissue inhibitor of metalloproteinases expression Am J Respir Med Cell Mol 24:591–598 Ramos C, Montano M, Garcia-Alvarez J, Ruiz V, Uhal BD, Selman M, Pardo A (2001) Fibroblasts from idiopathic pulmonary fibrosis and normal lungs differ in growth rate, apoptosis, and tissue inhibitor of metalloproteinases expression Am J Respir Med Cell Mol 24:591–598
40.
go back to reference Nicholson AG, Fulford LG, Colby TV, du Bois RM, Hansell DM, Wells AU (2002) The relationship between individual histologic features and disease progression in idiopathic pulmonary fibrosis Am J Respir Crit Car Med 166:173–117CrossRef Nicholson AG, Fulford LG, Colby TV, du Bois RM, Hansell DM, Wells AU (2002) The relationship between individual histologic features and disease progression in idiopathic pulmonary fibrosis Am J Respir Crit Car Med 166:173–117CrossRef
Metadata
Title
Different Effects of Growth Factors on Proliferation and Matrix Production of Normal and Fibrotic Human Lung Fibroblasts
Authors
M. Hetzel
M. Bachem
D. Anders
G. Trischler
M. Faehling
Publication date
01-08-2005
Publisher
Springer-Verlag
Published in
Lung / Issue 4/2005
Print ISSN: 0341-2040
Electronic ISSN: 1432-1750
DOI
https://doi.org/10.1007/s00408-004-2534-z

Other articles of this Issue 4/2005

Lung 4/2005 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.