Skip to main content
Top
Published in: European Archives of Psychiatry and Clinical Neuroscience 6/2018

01-09-2018 | Original Paper

Effects of haloperidol and clozapine on synapse-related gene expression in specific brain regions of male rats

Authors: Martina von Wilmsdorff, Fabian Manthey, Marie-Luise Bouvier, Oliver Staehlin, Peter Falkai, Eva Meisenzahl-Lechner, Andrea Schmitt, Peter J. Gebicke-Haerter

Published in: European Archives of Psychiatry and Clinical Neuroscience | Issue 6/2018

Login to get access

Abstract

We investigated the effects of clozapine and haloperidol, drugs that are widely used in the treatment of schizophrenia, on gene expression in six cortical and subcortical brain regions of adult rats. Drug treatments started at postnatal day 85 and continued over a 12-week period. Ten animals received haloperidol (1 mg/kg bodyweight) and ten received clozapine (20 mg/kg bodyweight) orally each day. Ten control rats received no drugs. The ten genes selected for this study did not belong to the dopaminergic or serotoninergic systems, which are typically targeted by the two substances, but coded for proteins of the cytoskeleton and proteins belonging to the synaptic transmitter release machinery. Quantitative real-time PCR was performed in the prelimbic cortex, cingulate gyrus (CG1) and caudate putamen and in the hippocampal cornu ammonis 1 (CA1), cornu ammonis 3 (CA3) and dentate gyrus. Results show distinct patterns of gene expression under the influence of the two drugs, but also distinct gene regulations dependent on the brain regions. Haloperidol-medicated animals showed statistically significant downregulation of SNAP-25 in CA3 (p = 0.0134) and upregulation of STX1A in CA1 (p = 0.0133) compared to controls. Clozapine-treated animals showed significant downregulation of SNAP-25 in CG1 (p = 0.0013). Our results clearly reveal that the drugs’ effects are different between brain regions. These effects are possibly indirectly mediated through feedback mechanisms by proteins targeted by the drugs, but direct effects of haloperidol or clozapine on mechanisms of gene expression cannot be excluded.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kircher T, Thienel R (2006) Functional brain imaging of symptoms and cognition in schizophrenia. The boundaries of consciousness. Elsevier, Amsterdam, p 302 Kircher T, Thienel R (2006) Functional brain imaging of symptoms and cognition in schizophrenia. The boundaries of consciousness. Elsevier, Amsterdam, p 302
2.
go back to reference Harrison PJ, Eastwood SL (2001) Neuropathological studies of synaptic connectivity in the hippocampal formation in Schizophrenia. Hippocampus 11(5):508–519CrossRefPubMed Harrison PJ, Eastwood SL (2001) Neuropathological studies of synaptic connectivity in the hippocampal formation in Schizophrenia. Hippocampus 11(5):508–519CrossRefPubMed
3.
go back to reference Balu DT, Coyle JT (2011) Neuroplasticity signaling pathways linked to the pathophysiology of schizophrenia. Neurosci Biobehav Rev 35(3):848–870CrossRefPubMed Balu DT, Coyle JT (2011) Neuroplasticity signaling pathways linked to the pathophysiology of schizophrenia. Neurosci Biobehav Rev 35(3):848–870CrossRefPubMed
4.
go back to reference Stephan KE, Baldeweg T, Friston KJ (2006) Synaptic plasticity and disconnection in schizophrenia. Biol Psychiatry 59:929–939CrossRefPubMed Stephan KE, Baldeweg T, Friston KJ (2006) Synaptic plasticity and disconnection in schizophrenia. Biol Psychiatry 59:929–939CrossRefPubMed
5.
go back to reference Gray LJ, Dean B, Kronsbein HC, Robinson PJ, Scarr E (2010) Region and diagnosis-specific changes in synaptic proteins in schizophrenia and bipolar I disorder. Psychiatry Res 178(2):374–380CrossRefPubMed Gray LJ, Dean B, Kronsbein HC, Robinson PJ, Scarr E (2010) Region and diagnosis-specific changes in synaptic proteins in schizophrenia and bipolar I disorder. Psychiatry Res 178(2):374–380CrossRefPubMed
6.
go back to reference Bowden NA, Scott RJ, Tooney PA (2008) Altered gene expression in the superior temporal gyrus in schizophrenia. BMC Genom 9:199–211CrossRef Bowden NA, Scott RJ, Tooney PA (2008) Altered gene expression in the superior temporal gyrus in schizophrenia. BMC Genom 9:199–211CrossRef
7.
go back to reference Schmitt A, Leonardi-Essmann F, Durrenberger PP, Wichert SP, Spanagel R, Arzberger T, Kretzschmar H, Zink M, Herrera-Marscitz M, Reynolds R, Rossner MJ, Falkai P, Gebicke-Haerter PJ (2012) Structural synaptic elements are differentially regulated in superior temporal cortex of schizophrenia patients. Eur Arch Psychiatry Clin Neurosci 262:565–577CrossRefPubMedPubMedCentral Schmitt A, Leonardi-Essmann F, Durrenberger PP, Wichert SP, Spanagel R, Arzberger T, Kretzschmar H, Zink M, Herrera-Marscitz M, Reynolds R, Rossner MJ, Falkai P, Gebicke-Haerter PJ (2012) Structural synaptic elements are differentially regulated in superior temporal cortex of schizophrenia patients. Eur Arch Psychiatry Clin Neurosci 262:565–577CrossRefPubMedPubMedCentral
8.
go back to reference Barakauskas VE, Beasley CL, Barr AM, Ypsilanti AR, Li HY, Thornton AE, Wong H, Rosokilja G, Mann JJ, Mancevski B, Jakovski Z, Davceva N, Ilievski B, Dwork AJ, Falkai P, Honer WG (2010).A novel mechanism and treatment target for presynaptic abnormalities in specific striatal regions in schizophrenia. Neuropsychopharmacology 35(5):1226–1238CrossRefPubMedPubMedCentral Barakauskas VE, Beasley CL, Barr AM, Ypsilanti AR, Li HY, Thornton AE, Wong H, Rosokilja G, Mann JJ, Mancevski B, Jakovski Z, Davceva N, Ilievski B, Dwork AJ, Falkai P, Honer WG (2010).A novel mechanism and treatment target for presynaptic abnormalities in specific striatal regions in schizophrenia. Neuropsychopharmacology 35(5):1226–1238CrossRefPubMedPubMedCentral
9.
go back to reference Barakauskas VE, Moradian A, Barr AM, Beasley CL, Rosoklija G, Mann JJ, Ilievski B, Stankov A, Dwork AJ, Falkai P, Morin GB, Honer WG (2016) Quantitative mass spectrometry reveals changes in SNAP-25 isoforms in schizophrenia. Schizophr Res 177(1–3):44–51CrossRefPubMedPubMedCentral Barakauskas VE, Moradian A, Barr AM, Beasley CL, Rosoklija G, Mann JJ, Ilievski B, Stankov A, Dwork AJ, Falkai P, Morin GB, Honer WG (2016) Quantitative mass spectrometry reveals changes in SNAP-25 isoforms in schizophrenia. Schizophr Res 177(1–3):44–51CrossRefPubMedPubMedCentral
10.
go back to reference Pantazopoulos H, Woo TW, Lim MP, Lange N, Berretta S (2010) Extracellular matrix-glial abnormalities in the amygdala and entorhinal cortex of subjects diagnosed with schizophrenia. Arch Gen Psychiatry 67(2):155–166CrossRefPubMedPubMedCentral Pantazopoulos H, Woo TW, Lim MP, Lange N, Berretta S (2010) Extracellular matrix-glial abnormalities in the amygdala and entorhinal cortex of subjects diagnosed with schizophrenia. Arch Gen Psychiatry 67(2):155–166CrossRefPubMedPubMedCentral
11.
go back to reference Fulton E (2009) Dynactin is a progressivity factor for dynein in vivo. Thesis, Florida Fulton E (2009) Dynactin is a progressivity factor for dynein in vivo. Thesis, Florida
12.
go back to reference Yao H, Kim HW, Mo J, Lee D, Han S, Koh MJ, Sun W, Choi S, Rhyu IJ, Kim H, Lee HW (2012) Developmental expression and subcellular distribution of synaptotagmin 11 in rat hippocampus. Neuroscience 225:35–43CrossRef Yao H, Kim HW, Mo J, Lee D, Han S, Koh MJ, Sun W, Choi S, Rhyu IJ, Kim H, Lee HW (2012) Developmental expression and subcellular distribution of synaptotagmin 11 in rat hippocampus. Neuroscience 225:35–43CrossRef
13.
go back to reference Castillo MA, Ghose S, Tamminga CA, Ulery-Reynolds PG (2010) Deficits in syntaxin 1 phosphorylation in schizophrenia prefrontal cortex. Biol Psychiatry 67(3):208–216CrossRefPubMed Castillo MA, Ghose S, Tamminga CA, Ulery-Reynolds PG (2010) Deficits in syntaxin 1 phosphorylation in schizophrenia prefrontal cortex. Biol Psychiatry 67(3):208–216CrossRefPubMed
14.
go back to reference McMahon HT, Bolshakov VY, Janz R, Hammer RE, Siegelbaum SA, Südhof TC (1996) Synaptophysin, a major synaptic vesicle protein is not essential for neurotransmitter release. Proc Natl Acad Sci USA 93(10):4760–4764CrossRefPubMed McMahon HT, Bolshakov VY, Janz R, Hammer RE, Siegelbaum SA, Südhof TC (1996) Synaptophysin, a major synaptic vesicle protein is not essential for neurotransmitter release. Proc Natl Acad Sci USA 93(10):4760–4764CrossRefPubMed
15.
go back to reference Schmitt U, Tanimoto N, Seeliger M, Schaeffel F, Leube RE (2009) Detection of behavioral alterations and learning deficits in mice lacking synaptophysin. Neuroscience 162(2):234–243CrossRefPubMed Schmitt U, Tanimoto N, Seeliger M, Schaeffel F, Leube RE (2009) Detection of behavioral alterations and learning deficits in mice lacking synaptophysin. Neuroscience 162(2):234–243CrossRefPubMed
16.
go back to reference Young CE, Arima K, Xie J, Hu L, Beach TG, Falkai P, Honer WG (1998) SNAP-25 deficit and hippocampal connectivity in schizophrenia. Cereb Cortex 8(3):261–268CrossRefPubMed Young CE, Arima K, Xie J, Hu L, Beach TG, Falkai P, Honer WG (1998) SNAP-25 deficit and hippocampal connectivity in schizophrenia. Cereb Cortex 8(3):261–268CrossRefPubMed
17.
go back to reference Antonucci F, Corradini I, Morini R, Fossati G, Menna E, Pozzi D, Pacioni S, Verderio C, Bacci A, Matteoli M (2013) Reduced SNAP-25 alters short-term plasticity at developing glutamatergic synapses. EMBO Rep 14(7):645–651CrossRefPubMedPubMedCentral Antonucci F, Corradini I, Morini R, Fossati G, Menna E, Pozzi D, Pacioni S, Verderio C, Bacci A, Matteoli M (2013) Reduced SNAP-25 alters short-term plasticity at developing glutamatergic synapses. EMBO Rep 14(7):645–651CrossRefPubMedPubMedCentral
18.
go back to reference Fernandes BS, Steiner J, Berk M, Molendijk ML, Gonzalez-Pinto A, Turck CW, Nardin P, Goncalves CA (2015) Peripheral brain-derived neurotrophic factor in schizophrenia and the role of antipsychotics: meta-analysis and implications. Mol Psychiatry 20(9):1108–1119CrossRefPubMed Fernandes BS, Steiner J, Berk M, Molendijk ML, Gonzalez-Pinto A, Turck CW, Nardin P, Goncalves CA (2015) Peripheral brain-derived neurotrophic factor in schizophrenia and the role of antipsychotics: meta-analysis and implications. Mol Psychiatry 20(9):1108–1119CrossRefPubMed
19.
go back to reference Qin XY, Wu HT, Cao C, Loh YP, Cheng Y (2017) A meta-analysis of peripheral blood nerve growth factor levels in patients with schizophrenia. Mol Psychiatry 22(9):1306–1312CrossRefPubMed Qin XY, Wu HT, Cao C, Loh YP, Cheng Y (2017) A meta-analysis of peripheral blood nerve growth factor levels in patients with schizophrenia. Mol Psychiatry 22(9):1306–1312CrossRefPubMed
20.
go back to reference Green MJ, Matheson SL, Shepherd A, Weickert CS, Carr VJ (2011) Brain-derived neurotrophic factor levels in schizophrenia: a systematic review with meta-analysis. Mol Psychiatry 16(9):960–972CrossRefPubMed Green MJ, Matheson SL, Shepherd A, Weickert CS, Carr VJ (2011) Brain-derived neurotrophic factor levels in schizophrenia: a systematic review with meta-analysis. Mol Psychiatry 16(9):960–972CrossRefPubMed
21.
go back to reference Naoe Y, Shinkai T, Hori H, Fukunaka Y, Utsunimiva K, Sakata S, Matsumoto C, Shimizu K, Hwang R, Ohmori O, Nakamura J (2007) No association between the brain-derived neurotrophic factor (BDNF) Vall66Met polymorphism and schizophrenia in Asian populations: evidence from a case-control study and meta-analysis. Neurosci Lett 415(2):108–112CrossRefPubMed Naoe Y, Shinkai T, Hori H, Fukunaka Y, Utsunimiva K, Sakata S, Matsumoto C, Shimizu K, Hwang R, Ohmori O, Nakamura J (2007) No association between the brain-derived neurotrophic factor (BDNF) Vall66Met polymorphism and schizophrenia in Asian populations: evidence from a case-control study and meta-analysis. Neurosci Lett 415(2):108–112CrossRefPubMed
22.
go back to reference De Bartolomeis A, Marmo F, Buonaguro EF, Rossi R, Tomasetti C, Iasevoli F (2013) Imaging brain gene expression profiles by antipsychotics: region-specific action of amisulpride on postsynaptic density transcripts compared to haloperidol. Eur Neuropsychopharmacol 23(11):1516–1529CrossRefPubMed De Bartolomeis A, Marmo F, Buonaguro EF, Rossi R, Tomasetti C, Iasevoli F (2013) Imaging brain gene expression profiles by antipsychotics: region-specific action of amisulpride on postsynaptic density transcripts compared to haloperidol. Eur Neuropsychopharmacol 23(11):1516–1529CrossRefPubMed
23.
go back to reference Rizig MA, McQuillin A, Ng A, Robinson M, Harrison A, Zvelebil M, Hunt SP, Gurling HM (2012) A gene expression and systems pathway analysis of the effects of clozapine compared to haloperidol in the mouse brain implicates susceptibility genes for schizophrenia. J Psychopharmacol 26(9):1218–1230CrossRefPubMed Rizig MA, McQuillin A, Ng A, Robinson M, Harrison A, Zvelebil M, Hunt SP, Gurling HM (2012) A gene expression and systems pathway analysis of the effects of clozapine compared to haloperidol in the mouse brain implicates susceptibility genes for schizophrenia. J Psychopharmacol 26(9):1218–1230CrossRefPubMed
24.
go back to reference Scarr E, Dean B (2012) Altered neuronal markers following treatment with mood stabilizer and antipsychotic drugs indicate an increased likelihood of neurotransmitter release. Clin Psychopharmacol Neurosci 10(1):25–33CrossRefPubMedPubMedCentral Scarr E, Dean B (2012) Altered neuronal markers following treatment with mood stabilizer and antipsychotic drugs indicate an increased likelihood of neurotransmitter release. Clin Psychopharmacol Neurosci 10(1):25–33CrossRefPubMedPubMedCentral
25.
go back to reference Barr AM, Young CE, Phillips AG, Honer WG (2006) Selective effects of typical antipsychotic drugs on SNAP-25 and synaptophysin in the hippocampal trisynaptic pathway. Int J Neuropsychopharmacol 9(4):457–463CrossRefPubMed Barr AM, Young CE, Phillips AG, Honer WG (2006) Selective effects of typical antipsychotic drugs on SNAP-25 and synaptophysin in the hippocampal trisynaptic pathway. Int J Neuropsychopharmacol 9(4):457–463CrossRefPubMed
26.
go back to reference von Wilmsdorff M, Bouvier ML, Henning U, Schmitt A, Schneider-Axmann T, Gaebel W (2013) The sex-dependent impact of chronic clozapine and haloperidol treatment on characteristics of the metabolic syndrome in a rat model. Pharmacopsychiatry 46(1):1–9 von Wilmsdorff M, Bouvier ML, Henning U, Schmitt A, Schneider-Axmann T, Gaebel W (2013) The sex-dependent impact of chronic clozapine and haloperidol treatment on characteristics of the metabolic syndrome in a rat model. Pharmacopsychiatry 46(1):1–9
27.
go back to reference Minet-Ringuet J, Even PC, Goubern M, Tomé P, de Beaurepaire R (2006) Long term treatment with olanzapine mixed with the food in male rats induces body fat deposition with no increase in body weight and no thermic alteration. Appetite 46:254–262CrossRefPubMed Minet-Ringuet J, Even PC, Goubern M, Tomé P, de Beaurepaire R (2006) Long term treatment with olanzapine mixed with the food in male rats induces body fat deposition with no increase in body weight and no thermic alteration. Appetite 46:254–262CrossRefPubMed
28.
go back to reference Minet-Ringuet J, Even PC, Lacroix M, Tomé P, de Beaurepaire R (2006) A model for antipsychotic-induced obesity in the male rat. Psychopharmacology 187:447–454CrossRefPubMed Minet-Ringuet J, Even PC, Lacroix M, Tomé P, de Beaurepaire R (2006) A model for antipsychotic-induced obesity in the male rat. Psychopharmacology 187:447–454CrossRefPubMed
29.
go back to reference Kapur S, Wadenberg ML, Remington G (2000) Are animal studies of antipsychotics appropriately dosed? Lessons from the bedside to the bench. Can J Psychiatry 45:241–246CrossRefPubMed Kapur S, Wadenberg ML, Remington G (2000) Are animal studies of antipsychotics appropriately dosed? Lessons from the bedside to the bench. Can J Psychiatry 45:241–246CrossRefPubMed
30.
go back to reference Paxinos G, Watson C (1999) The rat brain in stereotaxic coordinates, 4th edn. Academic Press, San Diego Paxinos G, Watson C (1999) The rat brain in stereotaxic coordinates, 4th edn. Academic Press, San Diego
31.
go back to reference Schmitt A, Hasan A, Gruber O, Falkai P (2011) Schizophrenia as a disorder of disconnectivity. Eur Arch Psychiatry Clin Neurosci 261(Suppl 2):S150–S154CrossRefPubMed Schmitt A, Hasan A, Gruber O, Falkai P (2011) Schizophrenia as a disorder of disconnectivity. Eur Arch Psychiatry Clin Neurosci 261(Suppl 2):S150–S154CrossRefPubMed
32.
go back to reference Hu K, Carroll J, Fedorovich S, Rickman C, Sukhodub A, Davletov B (2002) Vesicular restriction of synaptobrevin suggests a role for calcium in membrane fusion. Nature 415:646–650CrossRefPubMed Hu K, Carroll J, Fedorovich S, Rickman C, Sukhodub A, Davletov B (2002) Vesicular restriction of synaptobrevin suggests a role for calcium in membrane fusion. Nature 415:646–650CrossRefPubMed
33.
go back to reference Kontkanen O, Törönen P, Lakso M, Wong G, Castrén E (2002) Antipsychotic drug treatment induces differential gene expression in the rat cortex. J Neurochem 83:1043–1053CrossRefPubMed Kontkanen O, Törönen P, Lakso M, Wong G, Castrén E (2002) Antipsychotic drug treatment induces differential gene expression in the rat cortex. J Neurochem 83:1043–1053CrossRefPubMed
34.
go back to reference Carlsson A, Waters N, Carlsson ML (1999) Neurotransmitter interactions in schizophrenia-therapeutic implications. Biol Psychiatry 46(1):1388–1395CrossRefPubMed Carlsson A, Waters N, Carlsson ML (1999) Neurotransmitter interactions in schizophrenia-therapeutic implications. Biol Psychiatry 46(1):1388–1395CrossRefPubMed
35.
go back to reference MacDonald ML, Eaton ME, Dudman JT, Konradi C (2005) Antipsychotic drugs elevate mRNA levels of presynaptic proteins in the frontal cortex of the rat. Biol Psychiatry 57:1041–1051CrossRefPubMedPubMedCentral MacDonald ML, Eaton ME, Dudman JT, Konradi C (2005) Antipsychotic drugs elevate mRNA levels of presynaptic proteins in the frontal cortex of the rat. Biol Psychiatry 57:1041–1051CrossRefPubMedPubMedCentral
37.
go back to reference Halfter W, Yip J (2014) An organizing function of basement membranes in the developing nervous system. Mech Dev 133:1–10CrossRefPubMed Halfter W, Yip J (2014) An organizing function of basement membranes in the developing nervous system. Mech Dev 133:1–10CrossRefPubMed
38.
go back to reference Dityatev A, Schachner M (2003) Extracellular matrix molecules and synaptic plasticity. Nat Rev 4:456–468CrossRef Dityatev A, Schachner M (2003) Extracellular matrix molecules and synaptic plasticity. Nat Rev 4:456–468CrossRef
39.
go back to reference Mallik R, Gross SP (2004) Molecular motors: strategies to get along. Curr Biol 14(22):R971-R982CrossRef Mallik R, Gross SP (2004) Molecular motors: strategies to get along. Curr Biol 14(22):R971-R982CrossRef
40.
go back to reference Mead CL, Kuzyk MA, Moradian A, Wilson GM, Holt RA, Morin GB (2010) Cytosolic protein interactions of the schizophrenia susceptibility gene dysbindin. J Neurochem 113:1491–1503PubMed Mead CL, Kuzyk MA, Moradian A, Wilson GM, Holt RA, Morin GB (2010) Cytosolic protein interactions of the schizophrenia susceptibility gene dysbindin. J Neurochem 113:1491–1503PubMed
41.
go back to reference Durany N, Michel T, Zochling R, Boissl KW, Cruz-Sanchez FF, Riederer P et al (2001) Brain-derived neurotrophic factor and neurotrophin3 in schizophrenic psychoses. Schizophr Res 52:79–86CrossRefPubMed Durany N, Michel T, Zochling R, Boissl KW, Cruz-Sanchez FF, Riederer P et al (2001) Brain-derived neurotrophic factor and neurotrophin3 in schizophrenic psychoses. Schizophr Res 52:79–86CrossRefPubMed
42.
go back to reference Chlan-Fourney J, Ashe P, Nylen K, Juorio AV, Li XM (2002) Differential regulation of hippocampal BDNF mRNA by typical and atypical antipsychotic administration. Brain Res 954:11–20CrossRefPubMed Chlan-Fourney J, Ashe P, Nylen K, Juorio AV, Li XM (2002) Differential regulation of hippocampal BDNF mRNA by typical and atypical antipsychotic administration. Brain Res 954:11–20CrossRefPubMed
43.
go back to reference Roth BL, Sheffler DJ, Kroeze WK (2004) Magic shotguns vs magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov 3(4):353–359CrossRefPubMed Roth BL, Sheffler DJ, Kroeze WK (2004) Magic shotguns vs magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov 3(4):353–359CrossRefPubMed
44.
go back to reference Sommer JU, Schmitt A, Heck M, Schaeffer EL, Fendt M, Zink M, Nieselt K, Symons S, Petroianu G, Lex A, Herrera-Marschitz M, Spanagel R, Falkai P, Gebicke-Haerter PJ (2010) Differential expression of presynaptic genes in a rat model of postnatal hypoxia: relevance to schizophrenia. Eur Arch Psychiatry Clin Neurosci 260(Suppl 2):S81–9CrossRefPubMed Sommer JU, Schmitt A, Heck M, Schaeffer EL, Fendt M, Zink M, Nieselt K, Symons S, Petroianu G, Lex A, Herrera-Marschitz M, Spanagel R, Falkai P, Gebicke-Haerter PJ (2010) Differential expression of presynaptic genes in a rat model of postnatal hypoxia: relevance to schizophrenia. Eur Arch Psychiatry Clin Neurosci 260(Suppl 2):S81–9CrossRefPubMed
Metadata
Title
Effects of haloperidol and clozapine on synapse-related gene expression in specific brain regions of male rats
Authors
Martina von Wilmsdorff
Fabian Manthey
Marie-Luise Bouvier
Oliver Staehlin
Peter Falkai
Eva Meisenzahl-Lechner
Andrea Schmitt
Peter J. Gebicke-Haerter
Publication date
01-09-2018
Publisher
Springer Berlin Heidelberg
Published in
European Archives of Psychiatry and Clinical Neuroscience / Issue 6/2018
Print ISSN: 0940-1334
Electronic ISSN: 1433-8491
DOI
https://doi.org/10.1007/s00406-018-0872-8

Other articles of this Issue 6/2018

European Archives of Psychiatry and Clinical Neuroscience 6/2018 Go to the issue