Skip to main content
Top
Published in: European Archives of Psychiatry and Clinical Neuroscience 7/2015

01-10-2015 | Original Paper

Proteomics of the corpus callosum unravel pivotal players in the dysfunction of cell signaling, structure, and myelination in schizophrenia brains

Authors: Verônica M. Saia-Cereda, Juliana S. Cassoli, Andrea Schmitt, Peter Falkai, Juliana M. Nascimento, Daniel Martins-de-Souza

Published in: European Archives of Psychiatry and Clinical Neuroscience | Issue 7/2015

Login to get access

Abstract

Schizophrenia is an incurable and debilitating mental disorder that may affect up to 1 % of the world population. Morphological, electrophysiological, and neurophysiological studies suggest that the corpus callosum (CC), which is the largest portion of white matter in the human brain and responsible for inter-hemispheric communication, is altered in schizophrenia patients. Here, we employed mass spectrometry-based proteomics to investigate the molecular underpinnings of schizophrenia. Brain tissue samples were collected postmortem from nine schizophrenia patients and seven controls at the University of Heidelberg, Germany. Because the CC has a signaling role, we collected cytoplasmic (soluble) proteins and submitted them to nano-liquid chromatography-mass spectrometry (nano LC–MS/MS). Proteomes were quantified by label-free spectral counting. We identified 5678 unique peptides that corresponded to 1636 proteins belonging to 1512 protein families. Of those proteins, 65 differed significantly in expression: 28 were upregulated and 37 downregulated. Our data increased significantly the knowledge derived from an earlier proteomic study of the CC. Among the differentially expressed proteins are those associated with cell growth and maintenance, such as neurofilaments and tubulins; cell communication and signaling, such as 14-3-3 proteins; and oligodendrocyte function, such as myelin basic protein and myelin–oligodendrocyte glycoprotein. Additionally, 30 of the differentially expressed proteins were found previously in other proteomic studies in postmortem brains; this overlap in findings validates the present study and indicates that these proteins may be markers consistently associated with schizophrenia. Our findings increase the understanding of schizophrenia pathophysiology and may serve as a foundation for further treatment strategies.
Literature
2.
go back to reference Sullivan PF, Kendler KS, Neale MC (2003) Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 60(12):1187–1192CrossRefPubMed Sullivan PF, Kendler KS, Neale MC (2003) Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 60(12):1187–1192CrossRefPubMed
3.
go back to reference Hegarty JD, Baldessarini RJ, Tohen M, Waternaux C, Oepen G (1994) One hundred years of schizophrenia: a meta-analysis of the outcome literature. Am J Psychiatry 151(10):1409–1416CrossRefPubMed Hegarty JD, Baldessarini RJ, Tohen M, Waternaux C, Oepen G (1994) One hundred years of schizophrenia: a meta-analysis of the outcome literature. Am J Psychiatry 151(10):1409–1416CrossRefPubMed
4.
go back to reference Weickert TW, Goldberg TE, Gold JM, Bigelow LB, Egan MF, Weinberger DR (2000) Cognitive impairments in patients with schizophrenia displaying preserved and compromised intellect. Arch Gen Psychiatry 57(9):907–913CrossRefPubMed Weickert TW, Goldberg TE, Gold JM, Bigelow LB, Egan MF, Weinberger DR (2000) Cognitive impairments in patients with schizophrenia displaying preserved and compromised intellect. Arch Gen Psychiatry 57(9):907–913CrossRefPubMed
6.
go back to reference Guo H, Christoff JM, Campos VE, Li Y (2000) Normal corpus callosum in Emx1 mutant mice with C57BL/6 background. Biochem Biophys Res Commun 276(2):649–653CrossRefPubMed Guo H, Christoff JM, Campos VE, Li Y (2000) Normal corpus callosum in Emx1 mutant mice with C57BL/6 background. Biochem Biophys Res Commun 276(2):649–653CrossRefPubMed
7.
go back to reference Rotarska-Jagiela A, Schönmeyer R, Oertel V, Haenschel C, Vogeley K, Linden DEJ (2008) The corpus callosum in schizophrenia—volume and connectivity changes affect specific regions. NeuroImage 39:1522–1532CrossRefPubMed Rotarska-Jagiela A, Schönmeyer R, Oertel V, Haenschel C, Vogeley K, Linden DEJ (2008) The corpus callosum in schizophrenia—volume and connectivity changes affect specific regions. NeuroImage 39:1522–1532CrossRefPubMed
8.
go back to reference Innocenti GM, Ansermet F, Parnas J (2003) Schizophrenia, neurodevelopment and corpus callosum. Mol Psychiatry 8:261–274CrossRefPubMed Innocenti GM, Ansermet F, Parnas J (2003) Schizophrenia, neurodevelopment and corpus callosum. Mol Psychiatry 8:261–274CrossRefPubMed
12.
go back to reference Nascimento JM, Martins-de-Souza D (2015) The proteome of schizophrenia. Npj Schizophrenia 1:14003CrossRef Nascimento JM, Martins-de-Souza D (2015) The proteome of schizophrenia. Npj Schizophrenia 1:14003CrossRef
13.
go back to reference Rockstroh M, Müller SA, Jende C, Kerzhner A, von Bergen M, Tomm JM (2011) Cell fractionation—an important tool for compartment proteomics. OMICS 1:135–143 Rockstroh M, Müller SA, Jende C, Kerzhner A, von Bergen M, Tomm JM (2011) Cell fractionation—an important tool for compartment proteomics. OMICS 1:135–143
14.
go back to reference Martins-de-Souza D, Gattaz WF, Schmitt A, Novello JC, Marangoni S, Turck CW, Dias-Neto E (2009) Proteome analysis of schizophrenia patients Wernicke’s area reveals an energy metabolism dysregulation. BMC Psychiatry 9:17PubMedCentralCrossRefPubMed Martins-de-Souza D, Gattaz WF, Schmitt A, Novello JC, Marangoni S, Turck CW, Dias-Neto E (2009) Proteome analysis of schizophrenia patients Wernicke’s area reveals an energy metabolism dysregulation. BMC Psychiatry 9:17PubMedCentralCrossRefPubMed
15.
go back to reference Nogueira FCS, Domont GD (2014) Survey of shotgun proteomics. Shotgun proteomics. Springer, New York, pp 3–23CrossRef Nogueira FCS, Domont GD (2014) Survey of shotgun proteomics. Shotgun proteomics. Springer, New York, pp 3–23CrossRef
16.
go back to reference Oliveira BM, Coorssen JR, Martins-de-Souza D (2014) 2DE: the phoenix of proteomics. J Proteomics 104:140–150CrossRefPubMed Oliveira BM, Coorssen JR, Martins-de-Souza D (2014) 2DE: the phoenix of proteomics. J Proteomics 104:140–150CrossRefPubMed
17.
go back to reference Jahn T, Mussgay L (1989) Die statistische Kontrolle moeglicher Medikamenteneinfluesse in experimentalpsychologischen Schizophrenie studien: Ein Vorschlag zur Berechnung von Chlorpromazina aequivalenten. Z Klin Psychol Psychother 18:10 Jahn T, Mussgay L (1989) Die statistische Kontrolle moeglicher Medikamenteneinfluesse in experimentalpsychologischen Schizophrenie studien: Ein Vorschlag zur Berechnung von Chlorpromazina aequivalenten. Z Klin Psychol Psychother 18:10
18.
go back to reference Meltzer HY, Fatemi SH (1998) Treatment of schizophrenia. In: Schatzberg AF, Nemeroff CB (eds) The American psychiatric text book of psychopharmacology. American Psychiatric Press, Washington, pp 127–135 10 Meltzer HY, Fatemi SH (1998) Treatment of schizophrenia. In: Schatzberg AF, Nemeroff CB (eds) The American psychiatric text book of psychopharmacology. American Psychiatric Press, Washington, pp 127–135 10
20.
go back to reference Maccarrone G, Rewerts C, Lebar M, Turck CW, Martins-de- Souza D (2013) Proteome profiling of peripheral mononuclear cells from human blood. Proteomics 13:893–897CrossRefPubMed Maccarrone G, Rewerts C, Lebar M, Turck CW, Martins-de- Souza D (2013) Proteome profiling of peripheral mononuclear cells from human blood. Proteomics 13:893–897CrossRefPubMed
21.
go back to reference Oliva Daniele et al (1991) Complete structure of the human gene encoding neuron-specific enolase. Genomics 10(1):157–165CrossRefPubMed Oliva Daniele et al (1991) Complete structure of the human gene encoding neuron-specific enolase. Genomics 10(1):157–165CrossRefPubMed
22.
23.
go back to reference Martins-de-Souza D, Maccarrone G, Wobrock T, Zerr I, Gormanns P, Reckow S, Turck CW (2010) Proteome analysis of the thalamus and cerebrospinal fluid reveals glycolysis dysfunction and potential biomarkers candidates for schizophrenia. J Psychiatr Res 44(16):1176–1189CrossRefPubMed Martins-de-Souza D, Maccarrone G, Wobrock T, Zerr I, Gormanns P, Reckow S, Turck CW (2010) Proteome analysis of the thalamus and cerebrospinal fluid reveals glycolysis dysfunction and potential biomarkers candidates for schizophrenia. J Psychiatr Res 44(16):1176–1189CrossRefPubMed
25.
go back to reference Sivagnanasundaram S, Crossett B, Dedova I, Cordwell S, Matsumoto I (2007) Abnormal pathways in the genu of the corpus callosum in schizophrenia pathogenesis: a proteome study. Proteomics Clin Appl 1:1291–1305CrossRefPubMed Sivagnanasundaram S, Crossett B, Dedova I, Cordwell S, Matsumoto I (2007) Abnormal pathways in the genu of the corpus callosum in schizophrenia pathogenesis: a proteome study. Proteomics Clin Appl 1:1291–1305CrossRefPubMed
26.
go back to reference Bergson C, Levenson R, Goldman-Rakic PS, Lidow MS (2003) Dopamine receptor-interacting proteins: the Ca2+ connection in dopamine signaling. Trends Pharmacol Sci 24:486–492CrossRefPubMed Bergson C, Levenson R, Goldman-Rakic PS, Lidow MS (2003) Dopamine receptor-interacting proteins: the Ca2+ connection in dopamine signaling. Trends Pharmacol Sci 24:486–492CrossRefPubMed
27.
go back to reference Kapitein LC, Hoogenraad CC (2011) Which way to go? Cytoskeletal organization and polarized transport in neurons. Mol Cell Neurosci 46(1):9–20CrossRefPubMed Kapitein LC, Hoogenraad CC (2011) Which way to go? Cytoskeletal organization and polarized transport in neurons. Mol Cell Neurosci 46(1):9–20CrossRefPubMed
28.
go back to reference Berg D, Holzmann C, Riess O (2003) 14-3-3 proteins in the nervous system. Nat Rev Neurosci 4(September):752–762CrossRefPubMed Berg D, Holzmann C, Riess O (2003) 14-3-3 proteins in the nervous system. Nat Rev Neurosci 4(September):752–762CrossRefPubMed
29.
go back to reference Muratake T, Hayashi S, Ichikawa T, Kumanishi T, Ichimura Y, Kuwano R, Takahashi Y (1996) Structural organization and chromosomal assignment of the human 14-3-3 eta chain gene (YWHAH). Genomics 36:63–69CrossRefPubMed Muratake T, Hayashi S, Ichikawa T, Kumanishi T, Ichimura Y, Kuwano R, Takahashi Y (1996) Structural organization and chromosomal assignment of the human 14-3-3 eta chain gene (YWHAH). Genomics 36:63–69CrossRefPubMed
30.
go back to reference Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ, Lowry SF (2005) A network-based analysis of systemic inflammation in humans. Nature 437(October):1032–1037CrossRefPubMed Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ, Lowry SF (2005) A network-based analysis of systemic inflammation in humans. Nature 437(October):1032–1037CrossRefPubMed
31.
go back to reference Martins-de-Souza D, Gattaz WF, Schmitt A, Maccarrone G, Hunyadi-Gulyás E, Eberlin MN, Dias-Neto E (2009) Proteomic analysis of dorsolateral prefrontal cortex indicates the involvement of cytoskeleton, oligodendrocyte, energy metabolism and new potential markers in schizophrenia. J Psychiatr Res 43(11):978–986CrossRefPubMed Martins-de-Souza D, Gattaz WF, Schmitt A, Maccarrone G, Hunyadi-Gulyás E, Eberlin MN, Dias-Neto E (2009) Proteomic analysis of dorsolateral prefrontal cortex indicates the involvement of cytoskeleton, oligodendrocyte, energy metabolism and new potential markers in schizophrenia. J Psychiatr Res 43(11):978–986CrossRefPubMed
32.
go back to reference Martins-de-Souza D, Guest PC, Rahmoune H, Bahn S (2012) Proteomic approaches to unravel the complexity of schizophrenia. Expert Rev Proteomics 9(1):97–108CrossRefPubMed Martins-de-Souza D, Guest PC, Rahmoune H, Bahn S (2012) Proteomic approaches to unravel the complexity of schizophrenia. Expert Rev Proteomics 9(1):97–108CrossRefPubMed
33.
go back to reference Bell R, Munro J, Russ C, Powell JF, Bruinvels A, Kerwin RW, Collier DA (2000) Systematic screening of the 14-3-3 eta (eta) chain gene for polymorphic variants and case-control analysis in schizophrenia. Am J Med Genet 96:736–743CrossRefPubMed Bell R, Munro J, Russ C, Powell JF, Bruinvels A, Kerwin RW, Collier DA (2000) Systematic screening of the 14-3-3 eta (eta) chain gene for polymorphic variants and case-control analysis in schizophrenia. Am J Med Genet 96:736–743CrossRefPubMed
34.
go back to reference Wong AHC, Likhodi O, Trakalo J, Yusuf M, Sinha A, Pato CN, Kennedy JL (2005) Genetic and post-mortem mRNA analysis of the 14-3-3 genes that encode phosphoserine/threonine-binding regulatory proteins in schizophrenia and bipolar disorder. Schizophr Res 78:137–146CrossRefPubMed Wong AHC, Likhodi O, Trakalo J, Yusuf M, Sinha A, Pato CN, Kennedy JL (2005) Genetic and post-mortem mRNA analysis of the 14-3-3 genes that encode phosphoserine/threonine-binding regulatory proteins in schizophrenia and bipolar disorder. Schizophr Res 78:137–146CrossRefPubMed
35.
go back to reference Ikeda M, Hikita T, Taya S, Uraguchi-asaki J, Toyo-Oka K, Wynshaw-boris A, Iwata N (2008) Identification of YWHAE, a gene encoding 14-3-3 epsilon, as a possible susceptibility gene for schizophrenia. Hum Mol Genet 17(20):3212–3222CrossRefPubMed Ikeda M, Hikita T, Taya S, Uraguchi-asaki J, Toyo-Oka K, Wynshaw-boris A, Iwata N (2008) Identification of YWHAE, a gene encoding 14-3-3 epsilon, as a possible susceptibility gene for schizophrenia. Hum Mol Genet 17(20):3212–3222CrossRefPubMed
36.
37.
go back to reference Schmid SL (1997) Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu Rev Biochem 66(1):511–548CrossRefPubMed Schmid SL (1997) Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu Rev Biochem 66(1):511–548CrossRefPubMed
38.
go back to reference Schubert KO, Föcking M, Prehn JHM, Cotter DR (2012) Hypothesis review: are clathrin-mediated endocytosis and clathrin-dependent membrane and protein trafficking core pathophysiological processes in schizophrenia and bipolar disorder? Mol Psychiatry 17(7):669–681. doi:10.1038/mp.2011.123 CrossRefPubMed Schubert KO, Föcking M, Prehn JHM, Cotter DR (2012) Hypothesis review: are clathrin-mediated endocytosis and clathrin-dependent membrane and protein trafficking core pathophysiological processes in schizophrenia and bipolar disorder? Mol Psychiatry 17(7):669–681. doi:10.​1038/​mp.​2011.​123 CrossRefPubMed
39.
go back to reference Martins-De-Souza D, Gattaz WF, Schmitt A, Rewerts C, Marangoni S, Novello JC, Dias-Neto E (2009) Alterations in oligodendrocyte proteins, calcium homeostasis and new potential markers in schizophrenia anterior temporal lobe are revealed by shotgun proteome analysis. J Neural Transm 116:275–289CrossRefPubMed Martins-De-Souza D, Gattaz WF, Schmitt A, Rewerts C, Marangoni S, Novello JC, Dias-Neto E (2009) Alterations in oligodendrocyte proteins, calcium homeostasis and new potential markers in schizophrenia anterior temporal lobe are revealed by shotgun proteome analysis. J Neural Transm 116:275–289CrossRefPubMed
40.
go back to reference Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD et al (2001) Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 98(8):4746–4751PubMedCentralCrossRefPubMed Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD et al (2001) Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 98(8):4746–4751PubMedCentralCrossRefPubMed
41.
go back to reference Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB et al (2003) Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 362(9386):798–805CrossRefPubMed Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB et al (2003) Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 362(9386):798–805CrossRefPubMed
42.
go back to reference Foong J, Maier M, Barker GJ, Brocklehurst S, Miller DH, Ron MA (2000) In vivo investigation of white matter pathology in schizophrenia with magnetization transfer imaging. J Neurol Neurosurg Psychiatry 68:70–74PubMedCentralCrossRefPubMed Foong J, Maier M, Barker GJ, Brocklehurst S, Miller DH, Ron MA (2000) In vivo investigation of white matter pathology in schizophrenia with magnetization transfer imaging. J Neurol Neurosurg Psychiatry 68:70–74PubMedCentralCrossRefPubMed
43.
go back to reference Uranova N, Orlovskaya D, Vikhreva O, Zimina I, Kolomeets N, Vostrikov V et al (2001) Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull 55(5):597–610CrossRefPubMed Uranova N, Orlovskaya D, Vikhreva O, Zimina I, Kolomeets N, Vostrikov V et al (2001) Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull 55(5):597–610CrossRefPubMed
45.
go back to reference Bartzokis G (2002) Schizophrenia: breakdown in the well- regulated lifelong process of brain development and maturation. Neuropsychopharmacology 27(4):672–683CrossRefPubMed Bartzokis G (2002) Schizophrenia: breakdown in the well- regulated lifelong process of brain development and maturation. Neuropsychopharmacology 27(4):672–683CrossRefPubMed
47.
go back to reference Moehle MS, Luduena RF, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE (2012) Regional differences in expression of β-tubulin isoforms in schizophrenia. Schizophr Res 135(1):181–186PubMedCentralCrossRefPubMed Moehle MS, Luduena RF, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE (2012) Regional differences in expression of β-tubulin isoforms in schizophrenia. Schizophr Res 135(1):181–186PubMedCentralCrossRefPubMed
48.
go back to reference Denarier E, Aguezzoul M, Jolly C, Vourc’h C, Roure A, Andrieux A et al (1998) Genomic structure and chromosomal mapping of the mouse STOP gene (Mtap6). Biochem Biophys Res Commun 243:791–796CrossRefPubMed Denarier E, Aguezzoul M, Jolly C, Vourc’h C, Roure A, Andrieux A et al (1998) Genomic structure and chromosomal mapping of the mouse STOP gene (Mtap6). Biochem Biophys Res Commun 243:791–796CrossRefPubMed
51.
go back to reference Prabakaran S, Wengenroth M, Lockstone HE, Lilley K, Leweke FM, Bahn S (2007) 2-D DIGE analysis of liver and red blood cells provides further evidence for oxidative stress in schizophrenia. J Proteome Res 6:141–149CrossRefPubMed Prabakaran S, Wengenroth M, Lockstone HE, Lilley K, Leweke FM, Bahn S (2007) 2-D DIGE analysis of liver and red blood cells provides further evidence for oxidative stress in schizophrenia. J Proteome Res 6:141–149CrossRefPubMed
52.
go back to reference Funfschilling U, Supplie LM, Mahad D, Boretius S, Aiman S, Edgar J, Nave K (2013) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485(7399):517–521. doi:10.1038/nature11007 Funfschilling U, Supplie LM, Mahad D, Boretius S, Aiman S, Edgar J, Nave K (2013) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485(7399):517–521. doi:10.​1038/​nature11007
53.
54.
go back to reference Reddy RD, Sahebarao MP, Mukherjee S, Murthy JN (1991) Enzymes of the antioxidant defense system in chronic schizophrenic patients. Biol Psychiatry 30:409–412CrossRefPubMed Reddy RD, Sahebarao MP, Mukherjee S, Murthy JN (1991) Enzymes of the antioxidant defense system in chronic schizophrenic patients. Biol Psychiatry 30:409–412CrossRefPubMed
55.
go back to reference Yao JK, Reddy RD, van Kammen DP (2001) Oxidative damage and schizophrenia: an overview of the evidence and its therapeutic implications. CNS Drugs 15:287–310CrossRefPubMed Yao JK, Reddy RD, van Kammen DP (2001) Oxidative damage and schizophrenia: an overview of the evidence and its therapeutic implications. CNS Drugs 15:287–310CrossRefPubMed
56.
go back to reference Zhang XY, Zhou DF, Cao LY, Zhang PY, Wu GY (2003) Elevated blood superoxide dismutase in neuroleptic-free schizophrenia: association with positive symptoms. Psychiatry Res 117:85–88CrossRefPubMed Zhang XY, Zhou DF, Cao LY, Zhang PY, Wu GY (2003) Elevated blood superoxide dismutase in neuroleptic-free schizophrenia: association with positive symptoms. Psychiatry Res 117:85–88CrossRefPubMed
57.
go back to reference Rajasekaran A, Venkatasubramanian G, Berk M, Debnath M (2015) Mitochondrial dysfunction in schizophrenia: pathways, mechanisms and implications. Eurosci Biobehav Rev 48:10–21CrossRef Rajasekaran A, Venkatasubramanian G, Berk M, Debnath M (2015) Mitochondrial dysfunction in schizophrenia: pathways, mechanisms and implications. Eurosci Biobehav Rev 48:10–21CrossRef
58.
go back to reference Föcking M, Lopez LM, English JA, Dicker P, Wolff A, Brindley E, Cotter DR (2014) Proteomic and genomic evidence implicates the postsynaptic density in schizophrenia. Mol Psychiatry 20:424–432. doi:10.1038/mp.2014.63 CrossRefPubMed Föcking M, Lopez LM, English JA, Dicker P, Wolff A, Brindley E, Cotter DR (2014) Proteomic and genomic evidence implicates the postsynaptic density in schizophrenia. Mol Psychiatry 20:424–432. doi:10.​1038/​mp.​2014.​63 CrossRefPubMed
59.
go back to reference Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT-J, Griffin JL, Bahn S (2004) Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 9(7):684–697CrossRefPubMed Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT-J, Griffin JL, Bahn S (2004) Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 9(7):684–697CrossRefPubMed
60.
go back to reference Clark D, Dedova I, Cordwell S, Matsumoto I (2006) A proteome analysis of the anterior cingulate cortex gray matter in schizophrenia. Mol Psychiatry 11(5):459–470CrossRefPubMed Clark D, Dedova I, Cordwell S, Matsumoto I (2006) A proteome analysis of the anterior cingulate cortex gray matter in schizophrenia. Mol Psychiatry 11(5):459–470CrossRefPubMed
61.
go back to reference Beasley CL, Pennington K, Behan A, Wait R, Dunn MJ, Cotter D (2006) Proteomic analysis of the anterior cingulate cortex in the major psychiatric disorders: Evidence for disease-associated changes. Proteomics 6(11):3414–3425CrossRefPubMed Beasley CL, Pennington K, Behan A, Wait R, Dunn MJ, Cotter D (2006) Proteomic analysis of the anterior cingulate cortex in the major psychiatric disorders: Evidence for disease-associated changes. Proteomics 6(11):3414–3425CrossRefPubMed
62.
go back to reference Pennington K, Beasley CL, Dicker P, Fagan A, English J, Pariante CM, Cotter DR (2008) Prominent synaptic and metabolic abnormalities revealed by proteomic analysis of the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder. Mol Psychiatry 13(12):1102–1117CrossRefPubMed Pennington K, Beasley CL, Dicker P, Fagan A, English J, Pariante CM, Cotter DR (2008) Prominent synaptic and metabolic abnormalities revealed by proteomic analysis of the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder. Mol Psychiatry 13(12):1102–1117CrossRefPubMed
63.
go back to reference Behan AT, Byrne C, Dunn MJ, Cagney G, Cotter DR (2009) Proteomic analysis of membrane microdomain-associated proteins in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder reveals alterations in LAMP, STXBP1 and BASP1 protein expression. Mol Psychiatry 14(6):601–613CrossRefPubMed Behan AT, Byrne C, Dunn MJ, Cagney G, Cotter DR (2009) Proteomic analysis of membrane microdomain-associated proteins in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder reveals alterations in LAMP, STXBP1 and BASP1 protein expression. Mol Psychiatry 14(6):601–613CrossRefPubMed
64.
go back to reference Pennington K, Dicker P, Dunn MJ, Cotter DR (2008) Proteomic analysis reveals protein changes within layer 2 of the insular cortex in schizophrenia. Proteomics 8(23–24):5097–5107CrossRefPubMed Pennington K, Dicker P, Dunn MJ, Cotter DR (2008) Proteomic analysis reveals protein changes within layer 2 of the insular cortex in schizophrenia. Proteomics 8(23–24):5097–5107CrossRefPubMed
65.
go back to reference Martins-de-Souza D, Gattaz WF, Schmitt A, Rewerts C, Maccarrone G, Dias-Neto E, Turck CW (2009) Prefrontal cortex shotgun proteome analysis reveals altered calcium homeostasis and immune system imbalance in schizophrenia. Eur Arch Psychiatry Clin Neurosci 259(3):151–163CrossRef Martins-de-Souza D, Gattaz WF, Schmitt A, Rewerts C, Maccarrone G, Dias-Neto E, Turck CW (2009) Prefrontal cortex shotgun proteome analysis reveals altered calcium homeostasis and immune system imbalance in schizophrenia. Eur Arch Psychiatry Clin Neurosci 259(3):151–163CrossRef
66.
go back to reference English JA, Dicker P, Föcking M, Dunn MJ, Cotter DR (2009) 2-D DIGE analysis implicates cytoskeletal abnormalities in psychiatric disease. Proteomics 9(12):3368–3382CrossRefPubMed English JA, Dicker P, Föcking M, Dunn MJ, Cotter DR (2009) 2-D DIGE analysis implicates cytoskeletal abnormalities in psychiatric disease. Proteomics 9(12):3368–3382CrossRefPubMed
67.
go back to reference Schubert KO, Föcking M, Cotter DR (2015) Proteomic pathway analysis of the hippocampus in schizophrenia and bipolar affective disorder implicates 14-3-3 signaling, aryl hydrocarbon receptor signaling, and glucose metabolism: potential roles in GABAergic interneuron pathology. Schizophr Res. doi:10.1016/j.schres.2015.02.002 Schubert KO, Föcking M, Cotter DR (2015) Proteomic pathway analysis of the hippocampus in schizophrenia and bipolar affective disorder implicates 14-3-3 signaling, aryl hydrocarbon receptor signaling, and glucose metabolism: potential roles in GABAergic interneuron pathology. Schizophr Res. doi:10.​1016/​j.​schres.​2015.​02.​002
68.
go back to reference Föcking M, Dicker P, English JA, Schubert KO, Dunn MJ, Cotter DR (2011) Common proteomic changes in the hippocampus in schizophrenia and bipolar disorder and particular evidence for involvement of cornu ammonis regions 2 and 3. Arch Gen Psychiatry 68(5):477–488CrossRefPubMed Föcking M, Dicker P, English JA, Schubert KO, Dunn MJ, Cotter DR (2011) Common proteomic changes in the hippocampus in schizophrenia and bipolar disorder and particular evidence for involvement of cornu ammonis regions 2 and 3. Arch Gen Psychiatry 68(5):477–488CrossRefPubMed
69.
go back to reference Martins-de-Souza D, Schmitt A, Röder R, Lebar M, Schneider-Axmann T, Falkai P, Turck CW (2010) Sex-specific proteome differences in the anterior cingulate cortex of schizophrenia. J Psychiatr Res 44(14):989–991CrossRef Martins-de-Souza D, Schmitt A, Röder R, Lebar M, Schneider-Axmann T, Falkai P, Turck CW (2010) Sex-specific proteome differences in the anterior cingulate cortex of schizophrenia. J Psychiatr Res 44(14):989–991CrossRef
Metadata
Title
Proteomics of the corpus callosum unravel pivotal players in the dysfunction of cell signaling, structure, and myelination in schizophrenia brains
Authors
Verônica M. Saia-Cereda
Juliana S. Cassoli
Andrea Schmitt
Peter Falkai
Juliana M. Nascimento
Daniel Martins-de-Souza
Publication date
01-10-2015
Publisher
Springer Berlin Heidelberg
Published in
European Archives of Psychiatry and Clinical Neuroscience / Issue 7/2015
Print ISSN: 0940-1334
Electronic ISSN: 1433-8491
DOI
https://doi.org/10.1007/s00406-015-0621-1

Other articles of this Issue 7/2015

European Archives of Psychiatry and Clinical Neuroscience 7/2015 Go to the issue