Skip to main content
Top
Published in: European Archives of Oto-Rhino-Laryngology 8/2017

01-08-2017 | Rhinology

Isolation, culture optimization and functional characterization of stem cell neurospheres from mouse neonatal olfactory bulb and epithelium

Authors: Amir Minovi, Ainhara Aguado, Daniela Brunert, Stefan Kurtenbach, Stefan Dazert, Hanns Hatt, Heike Conrad

Published in: European Archives of Oto-Rhino-Laryngology | Issue 8/2017

Login to get access

Abstract

The olfactory epithelium contains basal cells with stem cell characteristics, which have the capacity to differentiate throughout life into olfactory receptor neurons (ORNs). Here we investigate the in vitro characteristics of stem cells taken from the olfactory bulb (OB) and the olfactory epithelium (OE) of neonatal TIS21 knock-in mice. The major aim of the study was the generation of olfactory neurospheres (ONS) derived from OB and OE of neonatal mice as a tool to further analyze the elementary processes of ORN development. Our data showed that the presence of epidermal growth factor (EGF) and fibroblast growth factor (FGF) leads to a significant increase in number of ONS derived from OB but not from OE. The differentiation of ONSs led to the formation of different neuronal cell types, in particular to bipolar-shaped cells as well as putative pyramidal-neurons, astrocytes and oligodendrocytes. Immunohistochemical staining confirmed the presence of astrocytes and neurons in both types of ONSs. In order to investigate the functionality of the neurons we performed calcium imaging and patch-clamp experiments. Calcium imaging experiments revealed that the application of high potassium concentration provokes calcium transients. No excitable properties, neither sodium currents nor action potentials, were observed for the bipolar-shaped cells derived from OB and OE neurospheres, which means that these types of cells morphologically defined as putative neuronal cells, were not physiologically active. Interestingly, patch-clamp recordings performed in the pyramidal-shaped cells of OB neurospheres showed sodium and potassium currents as well as action potentials. Our study will help to establish further models in the field of olfactology.
Literature
1.
go back to reference Anchan RM, Drake DP, Haines CF et al (1997) Disruption of local retinoid-mediated gene expression accompanies abnormal development in the mammalian olfactory pathway. J Comp Neurol 379:171–184CrossRefPubMed Anchan RM, Drake DP, Haines CF et al (1997) Disruption of local retinoid-mediated gene expression accompanies abnormal development in the mammalian olfactory pathway. J Comp Neurol 379:171–184CrossRefPubMed
2.
go back to reference Bakalyar HA, Reed RR (1990) Identification of a specialized adenylyl cyclase that may mediate odorant detection. Science 250:1403–1406CrossRefPubMed Bakalyar HA, Reed RR (1990) Identification of a specialized adenylyl cyclase that may mediate odorant detection. Science 250:1403–1406CrossRefPubMed
3.
go back to reference Barber RD, Jaworsky DE, Yau KW et al (2000) Isolation and in vitro differentiation of conditionally immortalized murine olfactory receptor neurons. J Neurosci 20:3695–3704PubMed Barber RD, Jaworsky DE, Yau KW et al (2000) Isolation and in vitro differentiation of conditionally immortalized murine olfactory receptor neurons. J Neurosci 20:3695–3704PubMed
4.
go back to reference Barish ME (1986) Differentiation of voltage-gated potassium current and modulation of excitability in cultured amphibian spinal neurones. J Physiol 375:229–250CrossRefPubMedPubMedCentral Barish ME (1986) Differentiation of voltage-gated potassium current and modulation of excitability in cultured amphibian spinal neurones. J Physiol 375:229–250CrossRefPubMedPubMedCentral
5.
go back to reference Barraud P, He X, Zhao C et al (2007) Contrasting effects of basic fibroblast growth factor and epidermal growth factor on mouse neonatal olfactory mucosa cells. Eur J Neurosci 26:3345–3357CrossRefPubMed Barraud P, He X, Zhao C et al (2007) Contrasting effects of basic fibroblast growth factor and epidermal growth factor on mouse neonatal olfactory mucosa cells. Eur J Neurosci 26:3345–3357CrossRefPubMed
6.
go back to reference Breer H, Fleischer J, Strotmann J (2006) The sense of smell: multiple olfactory subsystems. Cell Mol Life Sci 63:1465–1475CrossRefPubMed Breer H, Fleischer J, Strotmann J (2006) The sense of smell: multiple olfactory subsystems. Cell Mol Life Sci 63:1465–1475CrossRefPubMed
7.
go back to reference Calegari F, Haubensak W, Haffner C et al (2005) Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development. J Neurosci 25:6533–6538CrossRefPubMed Calegari F, Haubensak W, Haffner C et al (2005) Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development. J Neurosci 25:6533–6538CrossRefPubMed
8.
go back to reference Carter LA (2004) Olfactory horizontal basal cells demonstrate a conserved multipotent progenitor phenotype. J Neurosci 24:5670–5683CrossRefPubMed Carter LA (2004) Olfactory horizontal basal cells demonstrate a conserved multipotent progenitor phenotype. J Neurosci 24:5670–5683CrossRefPubMed
9.
go back to reference Chen X, Fang H, Schwob JE (2004) Multipotency of purified, transplanted globose basal cells in olfactory epithelium. J Comp Neurol 469:457–474CrossRefPubMed Chen X, Fang H, Schwob JE (2004) Multipotency of purified, transplanted globose basal cells in olfactory epithelium. J Comp Neurol 469:457–474CrossRefPubMed
10.
go back to reference Ciccolini F, Svendsen CN (1998) Fibroblast growth factor 2 (FGF-2) promotes acquisition of epidermal growth factor (EGF) responsiveness in mouse striatal precursor cells: identification of neural precursors responding to both EGF and FGF-2. J Neurosci Off J Soc Neurosci 18:7869–7880 Ciccolini F, Svendsen CN (1998) Fibroblast growth factor 2 (FGF-2) promotes acquisition of epidermal growth factor (EGF) responsiveness in mouse striatal precursor cells: identification of neural precursors responding to both EGF and FGF-2. J Neurosci Off J Soc Neurosci 18:7869–7880
11.
go back to reference Dehamer MK, Guevara JL, Hannon K et al (1994) Genesis of olfactory receptor neurons in vitro: regulation of progenitor cell divisions by fibroblast growth factors. Neuron 13:1083–1097CrossRefPubMed Dehamer MK, Guevara JL, Hannon K et al (1994) Genesis of olfactory receptor neurons in vitro: regulation of progenitor cell divisions by fibroblast growth factors. Neuron 13:1083–1097CrossRefPubMed
12.
go back to reference Doyle KL, Khan M, Cunningham AM (2001) Expression of the intermediate filament protein nestin by sustentacular cells in mature olfactory neuroepithelium. J Comp Neurol 437:186–195CrossRefPubMed Doyle KL, Khan M, Cunningham AM (2001) Expression of the intermediate filament protein nestin by sustentacular cells in mature olfactory neuroepithelium. J Comp Neurol 437:186–195CrossRefPubMed
13.
go back to reference Farbman AI, Buchholz JA (1996) Transforming growth factor-alpha and other growth factors stimulate cell division in olfactory epithelium in vitro. J Neurobiol 30:267–280CrossRefPubMed Farbman AI, Buchholz JA (1996) Transforming growth factor-alpha and other growth factors stimulate cell division in olfactory epithelium in vitro. J Neurobiol 30:267–280CrossRefPubMed
14.
go back to reference Getchell TV, Narla RK, Little S et al (2000) Horizontal basal cell proliferation in the olfactory epithelium of transforming growth factor-α transgenic mice. Cell Tissue Res 299:185–192PubMed Getchell TV, Narla RK, Little S et al (2000) Horizontal basal cell proliferation in the olfactory epithelium of transforming growth factor-α transgenic mice. Cell Tissue Res 299:185–192PubMed
15.
go back to reference Ghiani CA, Yuan X, Eisen AM et al (1999) Voltage-activated K+ channels and membrane depolarization regulate accumulation of the cyclin-dependent kinase inhibitors p27(Kip1) and p21(CIP1) in glial progenitor cells. J Neurosci Off J Soc Neurosci 19:5380–5392 Ghiani CA, Yuan X, Eisen AM et al (1999) Voltage-activated K+ channels and membrane depolarization regulate accumulation of the cyclin-dependent kinase inhibitors p27(Kip1) and p21(CIP1) in glial progenitor cells. J Neurosci Off J Soc Neurosci 19:5380–5392
16.
go back to reference Hatt H, Gisselmann G, Wetzel CH (1999) Cloning, functional expression and characterization of a human olfactory receptor. Cell Mol Biol (Noisy-le-grand) 45:285–291 Hatt H, Gisselmann G, Wetzel CH (1999) Cloning, functional expression and characterization of a human olfactory receptor. Cell Mol Biol (Noisy-le-grand) 45:285–291
17.
go back to reference Haubensak W, Attardo A, Denk W et al (2004) Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc Natl Acad Sci USA 101:3196–3201CrossRefPubMedPubMedCentral Haubensak W, Attardo A, Denk W et al (2004) Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc Natl Acad Sci USA 101:3196–3201CrossRefPubMedPubMedCentral
18.
go back to reference Hsu P, Yu F, Feron F et al (2001) Basic fibroblast growth factor and fibroblast growth factor receptors in adult olfactory epithelium. Brain Res 896:188–197CrossRefPubMed Hsu P, Yu F, Feron F et al (2001) Basic fibroblast growth factor and fibroblast growth factor receptors in adult olfactory epithelium. Brain Res 896:188–197CrossRefPubMed
19.
go back to reference Huard JM, Youngentob SL, Goldstein BJ et al (1998) Adult olfactory epithelium contains multipotent progenitors that give rise to neurons and non-neural cells. J Comp Neurol 400:469–486CrossRefPubMed Huard JM, Youngentob SL, Goldstein BJ et al (1998) Adult olfactory epithelium contains multipotent progenitors that give rise to neurons and non-neural cells. J Comp Neurol 400:469–486CrossRefPubMed
20.
go back to reference Iacopetti P (1999) Expression of the antiproliferative gene TIS21 at the onset of neurogenesis identifies single neuroepithelial cells that switch from proliferative to neuron-generating division. Proc Natl Acad Sci 96:4639–4644CrossRefPubMedPubMedCentral Iacopetti P (1999) Expression of the antiproliferative gene TIS21 at the onset of neurogenesis identifies single neuroepithelial cells that switch from proliferative to neuron-generating division. Proc Natl Acad Sci 96:4639–4644CrossRefPubMedPubMedCentral
21.
go back to reference Iwai N, Zhou Z, Roop DR et al (2008) Horizontal basal cells are multipotent progenitors in normal and injured adult olfactory epithelium. Stem Cells 26:1298–1306CrossRefPubMedPubMedCentral Iwai N, Zhou Z, Roop DR et al (2008) Horizontal basal cells are multipotent progenitors in normal and injured adult olfactory epithelium. Stem Cells 26:1298–1306CrossRefPubMedPubMedCentral
22.
23.
go back to reference Jang W, Youngentob SL, Schwob JE (2003) Globose basal cells are required for reconstitution of olfactory epithelium after methyl bromide lesion. J Comp Neurol 460:123–140CrossRefPubMed Jang W, Youngentob SL, Schwob JE (2003) Globose basal cells are required for reconstitution of olfactory epithelium after methyl bromide lesion. J Comp Neurol 460:123–140CrossRefPubMed
24.
go back to reference Jat PS, Noble MD, Ataliotis P et al (1991) Direct derivation of conditionally immortal cell lines from an H-2Kb-tsA58 transgenic mouse. Proc Natl Acad Sci USA 88:5096–5100CrossRefPubMedPubMedCentral Jat PS, Noble MD, Ataliotis P et al (1991) Direct derivation of conditionally immortal cell lines from an H-2Kb-tsA58 transgenic mouse. Proc Natl Acad Sci USA 88:5096–5100CrossRefPubMedPubMedCentral
25.
go back to reference Jones DT, Reed RR (1989) Golf: an olfactory neuron specific-G protein involved in odorant signal transduction. Science 244:790–795CrossRefPubMed Jones DT, Reed RR (1989) Golf: an olfactory neuron specific-G protein involved in odorant signal transduction. Science 244:790–795CrossRefPubMed
26.
go back to reference Klaassen I, Brakenhoff RH, Smeets SJ et al (1999) Considerations for in vitro retinoid experiments: importance of protein interaction. Biochim Biophys Acta 1427:265–275CrossRefPubMed Klaassen I, Brakenhoff RH, Smeets SJ et al (1999) Considerations for in vitro retinoid experiments: importance of protein interaction. Biochim Biophys Acta 1427:265–275CrossRefPubMed
27.
go back to reference Krezel W, Kastner P, Chambon P (1999) Differential expression of retinoid receptors in the adult mouse central nervous system. Neuroscience 89:1291–1300CrossRefPubMed Krezel W, Kastner P, Chambon P (1999) Differential expression of retinoid receptors in the adult mouse central nervous system. Neuroscience 89:1291–1300CrossRefPubMed
28.
go back to reference Krolewski RC, Jang W, Schwob JE (2011) The generation of olfactory epithelial neurospheres in vitro predicts engraftment capacity following transplantation in vivo. Exp Neurol 229:308–323CrossRefPubMedPubMedCentral Krolewski RC, Jang W, Schwob JE (2011) The generation of olfactory epithelial neurospheres in vitro predicts engraftment capacity following transplantation in vivo. Exp Neurol 229:308–323CrossRefPubMedPubMedCentral
29.
go back to reference Leung CT, Coulombe PA, Reed RR (2007) Contribution of olfactory neural stem cells to tissue maintenance and regeneration. Nat Neurosci 10:720–726CrossRefPubMed Leung CT, Coulombe PA, Reed RR (2007) Contribution of olfactory neural stem cells to tissue maintenance and regeneration. Nat Neurosci 10:720–726CrossRefPubMed
30.
go back to reference Liebau S, Propper C, Bockers T et al (2006) Selective blockage of Kv1.3 and Kv3.1 channels increases neural progenitor cell proliferation. J Neurochem 99:426–437CrossRefPubMed Liebau S, Propper C, Bockers T et al (2006) Selective blockage of Kv1.3 and Kv3.1 channels increases neural progenitor cell proliferation. J Neurochem 99:426–437CrossRefPubMed
31.
go back to reference Mackay-Sim A (2010) Stem cells and their niche in the adult olfactory mucosa. Arch Ital Biol 148:47–58PubMed Mackay-Sim A (2010) Stem cells and their niche in the adult olfactory mucosa. Arch Ital Biol 148:47–58PubMed
32.
go back to reference Mahanthappa NK, Schwarting GA (1993) Peptide growth factor control of olfactory neurogenesis and neuron survival in vitro: roles of EGF and TGF-beta s. Neuron 10:293–305CrossRefPubMed Mahanthappa NK, Schwarting GA (1993) Peptide growth factor control of olfactory neurogenesis and neuron survival in vitro: roles of EGF and TGF-beta s. Neuron 10:293–305CrossRefPubMed
33.
go back to reference Murrell W, Féron F, Wetzig A et al (2005) Multipotent stem cells from adult olfactory mucosa. Dev Dyn 233:496–515CrossRefPubMed Murrell W, Féron F, Wetzig A et al (2005) Multipotent stem cells from adult olfactory mucosa. Dev Dyn 233:496–515CrossRefPubMed
34.
go back to reference Murrell W, Wetzig A, Donnellan M et al (2008) Olfactory mucosa is a potential source for autologous stem cell therapy for Parkinson’s disease. Stem Cells 26:2183–2192CrossRefPubMed Murrell W, Wetzig A, Donnellan M et al (2008) Olfactory mucosa is a potential source for autologous stem cell therapy for Parkinson’s disease. Stem Cells 26:2183–2192CrossRefPubMed
35.
go back to reference Newman MP, Feron F, Mackay-Sim A (2000) Growth factor regulation of neurogenesis in adult olfactory epithelium. Neuroscience 99:343–350CrossRefPubMed Newman MP, Feron F, Mackay-Sim A (2000) Growth factor regulation of neurogenesis in adult olfactory epithelium. Neuroscience 99:343–350CrossRefPubMed
36.
go back to reference Pardo LA (2004) Voltage-gated potassium channels in cell proliferation. Physiology (Bethesda) 19:285–292CrossRef Pardo LA (2004) Voltage-gated potassium channels in cell proliferation. Physiology (Bethesda) 19:285–292CrossRef
37.
go back to reference Sharow KA, Temkin B, Asson-Batres MA (2012) Retinoic acid stability in stem cell cultures. Int J Dev Biol 56:273–278CrossRefPubMed Sharow KA, Temkin B, Asson-Batres MA (2012) Retinoic acid stability in stem cell cultures. Int J Dev Biol 56:273–278CrossRefPubMed
38.
39.
go back to reference Tome M, Lindsay SL, Riddell JS et al (2009) Identification of nonepithelial multipotent cells in the embryonic olfactory mucosa. Stem Cells 27:2196–2208CrossRefPubMed Tome M, Lindsay SL, Riddell JS et al (2009) Identification of nonepithelial multipotent cells in the embryonic olfactory mucosa. Stem Cells 27:2196–2208CrossRefPubMed
40.
go back to reference Tropepe V, Sibilia M, Ciruna BG et al (1999) Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev Biol 208:166–188CrossRefPubMed Tropepe V, Sibilia M, Ciruna BG et al (1999) Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev Biol 208:166–188CrossRefPubMed
41.
go back to reference Wang TW, Zhang H, Parent JM (2005) Retinoic acid regulates postnatal neurogenesis in the murine subventricular zone-olfactory bulb pathway. Development 132:2721–2732CrossRefPubMed Wang TW, Zhang H, Parent JM (2005) Retinoic acid regulates postnatal neurogenesis in the murine subventricular zone-olfactory bulb pathway. Development 132:2721–2732CrossRefPubMed
42.
go back to reference Wetzig A, Mackay-Sim A, Murrell W (2011) Characterization of olfactory stem cells. Cell Transplant 20:1673–1691 Wetzig A, Mackay-Sim A, Murrell W (2011) Characterization of olfactory stem cells. Cell Transplant 20:1673–1691
43.
go back to reference Wohl CA, Weiss S (1998) Retinoic acid enhances neuronal proliferation and astroglial differentiation in cultures of CNS stem cell-derived precursors. J Neurobiol 37:281–290CrossRefPubMed Wohl CA, Weiss S (1998) Retinoic acid enhances neuronal proliferation and astroglial differentiation in cultures of CNS stem cell-derived precursors. J Neurobiol 37:281–290CrossRefPubMed
44.
go back to reference Wonderlin WF, Strobl JS (1996) Potassium channels, proliferation and G1 progression. J Membr Biol 154:91–107CrossRefPubMed Wonderlin WF, Strobl JS (1996) Potassium channels, proliferation and G1 progression. J Membr Biol 154:91–107CrossRefPubMed
45.
go back to reference Zetterstrom RH, Lindqvist E, Mata De Urquiza A et al (1999) Role of retinoids in the CNS: differential expression of retinoid binding proteins and receptors and evidence for presence of retinoic acid. Eur J Neurosci 11:407–416CrossRefPubMed Zetterstrom RH, Lindqvist E, Mata De Urquiza A et al (1999) Role of retinoids in the CNS: differential expression of retinoid binding proteins and receptors and evidence for presence of retinoic acid. Eur J Neurosci 11:407–416CrossRefPubMed
Metadata
Title
Isolation, culture optimization and functional characterization of stem cell neurospheres from mouse neonatal olfactory bulb and epithelium
Authors
Amir Minovi
Ainhara Aguado
Daniela Brunert
Stefan Kurtenbach
Stefan Dazert
Hanns Hatt
Heike Conrad
Publication date
01-08-2017
Publisher
Springer Berlin Heidelberg
Published in
European Archives of Oto-Rhino-Laryngology / Issue 8/2017
Print ISSN: 0937-4477
Electronic ISSN: 1434-4726
DOI
https://doi.org/10.1007/s00405-017-4590-z

Other articles of this Issue 8/2017

European Archives of Oto-Rhino-Laryngology 8/2017 Go to the issue