Skip to main content
Top
Published in: European Archives of Oto-Rhino-Laryngology 1/2017

01-01-2017 | Review Article

Structural and functional changes of cortical and subcortical structures following peripheral vestibular damage in humans

Authors: Maxime Maheu, Philippe Fournier, Simon P. Landry, Marie-Soleil Houde, François Champoux, Issam Saliba

Published in: European Archives of Oto-Rhino-Laryngology | Issue 1/2017

Login to get access

Excerpt

The vestibular system is one of the primary organs involved in balance and postural control. A number of pathologies stemming from various etiologies can seriously affect the vestibular system and result in imbalance or postural control difficulties that may impair daily activities. In fact, between 2001 and 2004, 69 million US adults aged 40 years and older reported encountering vestibular dysfunctions [1]. As such, vestibular dizziness is a widely encountered and important health problem that merits deepened consideration. …
Literature
1.
go back to reference Agrawal Y, Della Santina JP, Schubert CC, Lloyd MM (2009) Disorders of balance and vestibular disorders in US adults. Arch Intern Med 169:938–944CrossRefPubMed Agrawal Y, Della Santina JP, Schubert CC, Lloyd MM (2009) Disorders of balance and vestibular disorders in US adults. Arch Intern Med 169:938–944CrossRefPubMed
2.
go back to reference Jones SM, Jones TA, Mills KN, Gaines GC (2009) Anatomical and physiological considerations in vestibular dysfunction and compensation. Semin Hear 30:231–241CrossRefPubMedPubMedCentral Jones SM, Jones TA, Mills KN, Gaines GC (2009) Anatomical and physiological considerations in vestibular dysfunction and compensation. Semin Hear 30:231–241CrossRefPubMedPubMedCentral
3.
go back to reference Khan S, Chang R (2013) Anatomy of the vestibular system: a review. Neuro Rehabil 32:437–443 Khan S, Chang R (2013) Anatomy of the vestibular system: a review. Neuro Rehabil 32:437–443
4.
go back to reference Highstein SM, Holstein GR (2012) The anatomical and physiological framework for vestibular prostheses. Anat Rec (Hoboken) 295:2000–2009CrossRef Highstein SM, Holstein GR (2012) The anatomical and physiological framework for vestibular prostheses. Anat Rec (Hoboken) 295:2000–2009CrossRef
6.
go back to reference Pavlou M (2010) The use of optokinetic stimulation in vestibular rehabilitation. J Neurol Phys Ther 34:105–110CrossRefPubMed Pavlou M (2010) The use of optokinetic stimulation in vestibular rehabilitation. J Neurol Phys Ther 34:105–110CrossRefPubMed
7.
go back to reference Cawthorne T (1944) The physiological basis for head exercices. J Chart Soc Physiother 30:106 Cawthorne T (1944) The physiological basis for head exercices. J Chart Soc Physiother 30:106
8.
go back to reference Deveze A, Bernard-Demanze L, Xavier F, Lavieille JP, Elziere M (2014) Vestibular compensation and vestibular rehabilitation: current concepts and new trends. Neurophysiol Clin 44:49–57CrossRefPubMed Deveze A, Bernard-Demanze L, Xavier F, Lavieille JP, Elziere M (2014) Vestibular compensation and vestibular rehabilitation: current concepts and new trends. Neurophysiol Clin 44:49–57CrossRefPubMed
9.
go back to reference Boyer FC, Percebois-Macadre L, Regrain E et al (2008) Vestibular rehabilitation therapy. Neurophysiol Clin 38:479–487CrossRefPubMed Boyer FC, Percebois-Macadre L, Regrain E et al (2008) Vestibular rehabilitation therapy. Neurophysiol Clin 38:479–487CrossRefPubMed
10.
go back to reference Giray M, Kirazli Y, Karapolat H, Celebisoy N, Bilgen C, Kirazli T (2009) Short-term effects of vestibular rehabilitation in patients with chronic unilateral vestibular dysfunction: a randomized controlled study. Arch Phys Med Rehabil 90:1325–1331CrossRefPubMed Giray M, Kirazli Y, Karapolat H, Celebisoy N, Bilgen C, Kirazli T (2009) Short-term effects of vestibular rehabilitation in patients with chronic unilateral vestibular dysfunction: a randomized controlled study. Arch Phys Med Rehabil 90:1325–1331CrossRefPubMed
11.
go back to reference Hillier SL, Hollohan V (2007) Vestibular rehabilitation for unilateral peripheral vestibular dysfunction. Cochrane Database Syst Rev 36:248–249 Hillier SL, Hollohan V (2007) Vestibular rehabilitation for unilateral peripheral vestibular dysfunction. Cochrane Database Syst Rev 36:248–249
12.
go back to reference Karapolat H, Celebisoy N, Kirazli Y et al (2014) Is vestibular rehabilitation as effective in bilateral vestibular dysfunction as in unilateral vestibular dysfunction? Eur J Phys Rehabil Med 50:657–663PubMed Karapolat H, Celebisoy N, Kirazli Y et al (2014) Is vestibular rehabilitation as effective in bilateral vestibular dysfunction as in unilateral vestibular dysfunction? Eur J Phys Rehabil Med 50:657–663PubMed
13.
go back to reference Porciuncula F, Johnson CC, Glickman LB (2012) The effect of vestibular rehabilitation on adults with bilateral vestibular hypofunction: a systematic review. J Vestib Res 22:283–298PubMed Porciuncula F, Johnson CC, Glickman LB (2012) The effect of vestibular rehabilitation on adults with bilateral vestibular hypofunction: a systematic review. J Vestib Res 22:283–298PubMed
14.
go back to reference Brown KE, Whitney SL, Marchetti GF, Wrisley DM, Furman JM (2006) Physical therapy for central vestibular dysfunction. Arch Phys Med Rehabil 87:76–81CrossRefPubMed Brown KE, Whitney SL, Marchetti GF, Wrisley DM, Furman JM (2006) Physical therapy for central vestibular dysfunction. Arch Phys Med Rehabil 87:76–81CrossRefPubMed
15.
go back to reference Alghadir AH, Iqbal ZA, Whitney SL (2013) An update on vestibular physical therapy. J Chin Med Assoc 76:1–8CrossRefPubMed Alghadir AH, Iqbal ZA, Whitney SL (2013) An update on vestibular physical therapy. J Chin Med Assoc 76:1–8CrossRefPubMed
16.
go back to reference Goncalves DU, Felipe L, Lima TM (2008) Interpretation and use of caloric testing. Braz J Otorhinolaryngol 74:440–446CrossRefPubMed Goncalves DU, Felipe L, Lima TM (2008) Interpretation and use of caloric testing. Braz J Otorhinolaryngol 74:440–446CrossRefPubMed
17.
go back to reference Rosengren SM, Welgampola MS, Colebatch JG (2010) Vestibular evoked myogenic potentials: past, present and future. Clin Neurophysiol 121:636–651CrossRefPubMed Rosengren SM, Welgampola MS, Colebatch JG (2010) Vestibular evoked myogenic potentials: past, present and future. Clin Neurophysiol 121:636–651CrossRefPubMed
18.
go back to reference Buttner U, Kremmyda O (2007) Smooth pursuit eye movements and optokinetic nystagmus. Dev Ophthalmol 40:76–89CrossRefPubMed Buttner U, Kremmyda O (2007) Smooth pursuit eye movements and optokinetic nystagmus. Dev Ophthalmol 40:76–89CrossRefPubMed
19.
go back to reference Dieterich M, Brandt T (2008) Functional brain imaging of peripheral and central vestibular disorders. Brain 131:2538–2552CrossRefPubMed Dieterich M, Brandt T (2008) Functional brain imaging of peripheral and central vestibular disorders. Brain 131:2538–2552CrossRefPubMed
20.
go back to reference Brandt T, Bartenstein P, Janek A, Dieterich M (1998) Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain 121(Pt 9):1749–1758CrossRefPubMed Brandt T, Bartenstein P, Janek A, Dieterich M (1998) Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain 121(Pt 9):1749–1758CrossRefPubMed
21.
go back to reference Dieterich M, Bense S, Stephan T, Yousry TA, Brandt T (2003) fMRI signal increases and decreases in cortical areas during small-field optokinetic stimulation and central fixation. Exp Brain Res 148:117–127CrossRefPubMed Dieterich M, Bense S, Stephan T, Yousry TA, Brandt T (2003) fMRI signal increases and decreases in cortical areas during small-field optokinetic stimulation and central fixation. Exp Brain Res 148:117–127CrossRefPubMed
22.
go back to reference Karim HT, Fuhrman SI, Furman JM, Huppert TJ (2013) Neuroimaging to detect cortical projection of vestibular response to caloric stimulation in young and older adults using functional near-infrared spectroscopy (fNIRS). Neuroimage 76:1–10CrossRefPubMedPubMedCentral Karim HT, Fuhrman SI, Furman JM, Huppert TJ (2013) Neuroimaging to detect cortical projection of vestibular response to caloric stimulation in young and older adults using functional near-infrared spectroscopy (fNIRS). Neuroimage 76:1–10CrossRefPubMedPubMedCentral
23.
go back to reference Klingner CM, Volk GF, Flatz C et al (2013) Components of vestibular cortical function. Behav Brain Res 236:194–199CrossRefPubMed Klingner CM, Volk GF, Flatz C et al (2013) Components of vestibular cortical function. Behav Brain Res 236:194–199CrossRefPubMed
24.
go back to reference Bense S, Deutschlander A, Stephan T et al (2004) Preserved visual-vestibular interaction in patients with bilateral vestibular failure. Neurology 63:122–128CrossRefPubMed Bense S, Deutschlander A, Stephan T et al (2004) Preserved visual-vestibular interaction in patients with bilateral vestibular failure. Neurology 63:122–128CrossRefPubMed
25.
go back to reference Miyamoto T, Fukushima K, Takada T, de Waele C, Vidal PP (2007) Saccular stimulation of the human cortex: a functional magnetic resonance imaging study. Neurosci Lett 423:68–72CrossRefPubMed Miyamoto T, Fukushima K, Takada T, de Waele C, Vidal PP (2007) Saccular stimulation of the human cortex: a functional magnetic resonance imaging study. Neurosci Lett 423:68–72CrossRefPubMed
26.
go back to reference Schlindwein P, Mueller M, Bauermann T, Brandt T, Stoeter P, Dieterich M (2008) Cortical representation of saccular vestibular stimulation: VEMPs in fMRI. Neuroimage 39:19–31CrossRefPubMed Schlindwein P, Mueller M, Bauermann T, Brandt T, Stoeter P, Dieterich M (2008) Cortical representation of saccular vestibular stimulation: VEMPs in fMRI. Neuroimage 39:19–31CrossRefPubMed
27.
go back to reference Brandt T, Dieterich M (1999) The vestibular cortex. Its locations, functions, and disorders. Ann N Y Acad Sci 871:293–312CrossRefPubMed Brandt T, Dieterich M (1999) The vestibular cortex. Its locations, functions, and disorders. Ann N Y Acad Sci 871:293–312CrossRefPubMed
28.
go back to reference Kikuchi M, Naito Y, Senda M et al (2009) Cortical activation during optokinetic stimulation—an fMRI study. Acta Otolaryngol 129:440–443CrossRefPubMed Kikuchi M, Naito Y, Senda M et al (2009) Cortical activation during optokinetic stimulation—an fMRI study. Acta Otolaryngol 129:440–443CrossRefPubMed
29.
go back to reference Murofushi T, Iwasaki S, Ushio M (2006) Recovery of vestibular evoked myogenic potentials after a vertigo attack due to vestibular neuritis. Acta Otolaryngol 126:364–367CrossRefPubMed Murofushi T, Iwasaki S, Ushio M (2006) Recovery of vestibular evoked myogenic potentials after a vertigo attack due to vestibular neuritis. Acta Otolaryngol 126:364–367CrossRefPubMed
30.
go back to reference Bense S, Janush B, Vucurevic G et al (2006) Brainstem and cerebellar fMRI-activation during horizontal and vertical optokinetic stimulation. Exp Brain Res 174:312–323CrossRefPubMed Bense S, Janush B, Vucurevic G et al (2006) Brainstem and cerebellar fMRI-activation during horizontal and vertical optokinetic stimulation. Exp Brain Res 174:312–323CrossRefPubMed
31.
go back to reference Bense S, Stephan T, Yousry TA, Brandt T, Dieterich M (2001) Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI). J Neurophysiol 85:886–899PubMed Bense S, Stephan T, Yousry TA, Brandt T, Dieterich M (2001) Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI). J Neurophysiol 85:886–899PubMed
32.
go back to reference Brandt T, Schautzer F, Hamilton DA et al (2005) Vestibular loss causes hippocampal atrophy and impaired spatial memory in humans. Brain 128:2732–2741CrossRefPubMed Brandt T, Schautzer F, Hamilton DA et al (2005) Vestibular loss causes hippocampal atrophy and impaired spatial memory in humans. Brain 128:2732–2741CrossRefPubMed
33.
go back to reference Hufner K, Stephan T, Hamilton DA et al (2009) Gray-matter atrophy after chronic complete unilateral vestibular deafferentation. Ann N Y Acad Sci 1164:383–385CrossRefPubMed Hufner K, Stephan T, Hamilton DA et al (2009) Gray-matter atrophy after chronic complete unilateral vestibular deafferentation. Ann N Y Acad Sci 1164:383–385CrossRefPubMed
34.
go back to reference Helmchen C, Klinkenstein J, Machner B, Rambold H, Mohr C, Sander T (2009) Structural changes in the human brain following vestibular neuritis indicate central vestibular compensation. Ann N Y Acad Sci 1164:104–115CrossRefPubMed Helmchen C, Klinkenstein J, Machner B, Rambold H, Mohr C, Sander T (2009) Structural changes in the human brain following vestibular neuritis indicate central vestibular compensation. Ann N Y Acad Sci 1164:104–115CrossRefPubMed
35.
go back to reference zu Eulenburg P, Stoeter P, Dieterich M (2010) Voxel-based morphometry depicts central compensation after vestibular neuritis. Ann Neurol 68:241–249CrossRefPubMed zu Eulenburg P, Stoeter P, Dieterich M (2010) Voxel-based morphometry depicts central compensation after vestibular neuritis. Ann Neurol 68:241–249CrossRefPubMed
36.
go back to reference Lacour M, Tighilet B (2010) Plastic events in the vestibular nuclei during vestibular compensation: the brain orchestration of a “deafferentation” code. Restor Neurol Neurosci 28:19–35PubMed Lacour M, Tighilet B (2010) Plastic events in the vestibular nuclei during vestibular compensation: the brain orchestration of a “deafferentation” code. Restor Neurol Neurosci 28:19–35PubMed
37.
go back to reference Olabi B, Bergquist F, Dutia MB (2009) Rebalancing the commissural system: mechanisms of vestibular compensation. J Vestib Res 19:201–207PubMed Olabi B, Bergquist F, Dutia MB (2009) Rebalancing the commissural system: mechanisms of vestibular compensation. J Vestib Res 19:201–207PubMed
38.
go back to reference Helmchen C, Ze Y, Sprenger A, Münte T (2014) Changes in resting-state fMRI in vestibular neuritis. Brain Structure and Function 219:1889–1900CrossRefPubMed Helmchen C, Ze Y, Sprenger A, Münte T (2014) Changes in resting-state fMRI in vestibular neuritis. Brain Structure and Function 219:1889–1900CrossRefPubMed
39.
go back to reference Deutschlander A, Hufner K, Kalla R et al (2008) Unilateral vestibular failure suppresses cortical visual motion processing. Brain 131:1025–1034CrossRefPubMed Deutschlander A, Hufner K, Kalla R et al (2008) Unilateral vestibular failure suppresses cortical visual motion processing. Brain 131:1025–1034CrossRefPubMed
40.
go back to reference Halmagyi GM, Weber KP, Curthoys IS (2010) Vestibular function after acute vestibular neuritis. Restor Neurol Neurosci 28:37–46PubMed Halmagyi GM, Weber KP, Curthoys IS (2010) Vestibular function after acute vestibular neuritis. Restor Neurol Neurosci 28:37–46PubMed
41.
go back to reference Bense S, Bartenstein P, Lochmann M, Schlindwein P, Brandt T, Dieterich M (2004) Metabolic changes in vestibular and visual cortices in acute vestibular neuritis. Ann Neurol 56:624–630CrossRefPubMed Bense S, Bartenstein P, Lochmann M, Schlindwein P, Brandt T, Dieterich M (2004) Metabolic changes in vestibular and visual cortices in acute vestibular neuritis. Ann Neurol 56:624–630CrossRefPubMed
42.
go back to reference Dieterich M, Brandt T (2010) Imaging cortical activity after vestibular lesions. Restor Neurol Neurosci 28:47–56PubMed Dieterich M, Brandt T (2010) Imaging cortical activity after vestibular lesions. Restor Neurol Neurosci 28:47–56PubMed
43.
go back to reference Alessandrini M, Napolitano B, Bruno E, Belcastro L, Ottaviani F, Schillaci O (2009) Cerebral plasticity in acute vestibular deficit. Eur Arch Otorhinolaryngol 266:1547–1551CrossRefPubMed Alessandrini M, Napolitano B, Bruno E, Belcastro L, Ottaviani F, Schillaci O (2009) Cerebral plasticity in acute vestibular deficit. Eur Arch Otorhinolaryngol 266:1547–1551CrossRefPubMed
44.
go back to reference Dieterich M, Bauermann T, Best C, Stoeter P, Schlindwein P (2007) Evidence for cortical visual substitution of chronic bilateral vestibular failure (an fMRI study). Brain 130:2108–2116CrossRefPubMed Dieterich M, Bauermann T, Best C, Stoeter P, Schlindwein P (2007) Evidence for cortical visual substitution of chronic bilateral vestibular failure (an fMRI study). Brain 130:2108–2116CrossRefPubMed
45.
go back to reference Stahle J (1990) Controversies on the caloric response. From Barany’s theory to studies in microgravity. Acta Otolaryngol 109:162–167CrossRefPubMed Stahle J (1990) Controversies on the caloric response. From Barany’s theory to studies in microgravity. Acta Otolaryngol 109:162–167CrossRefPubMed
Metadata
Title
Structural and functional changes of cortical and subcortical structures following peripheral vestibular damage in humans
Authors
Maxime Maheu
Philippe Fournier
Simon P. Landry
Marie-Soleil Houde
François Champoux
Issam Saliba
Publication date
01-01-2017
Publisher
Springer Berlin Heidelberg
Published in
European Archives of Oto-Rhino-Laryngology / Issue 1/2017
Print ISSN: 0937-4477
Electronic ISSN: 1434-4726
DOI
https://doi.org/10.1007/s00405-016-3986-5

Other articles of this Issue 1/2017

European Archives of Oto-Rhino-Laryngology 1/2017 Go to the issue