Skip to main content
Top
Published in: European Archives of Oto-Rhino-Laryngology 7/2010

01-07-2010 | Otology

Auditory discrimination training for tinnitus treatment: the effect of different paradigms

Authors: Carlos Herraiz, I. Diges, P. Cobo, J. M. Aparicio, A. Toledano

Published in: European Archives of Oto-Rhino-Laryngology | Issue 7/2010

Login to get access

Abstract

Acoustic deprivation, i.e. hearing loss, is responsible for a cascade of processes resulting in reorganisation of the cortex. Tinnitus mechanisms are explained by synchronization of the neural spontaneous activity and might be related to cortical re-mapping. Auditory discrimination training (ADT) has demonstrated in both animals and humans to induce tonotopical changes in the auditory pathways through neural plasticity. We hypothesize that ADT could have some effect on tinnitus perception. The objective of this study is to compare the effect on tinnitus following two paradigms of ADT. Only patients from 20 to 60 years of age were recruited. Inclusion criteria were pure tone tinnitus of mild or moderate handicap according to the Tinnitus Handicap Inventory score (<56). ADT patients were randomized in two groups: SAME (ADT in the same frequency of tinnitus pitch, 20 patients) and NONSAME (ADT in the frequency one-octave below tinnitus pitch, 21 patients). Groups of pair of tones (70% standard tones ST, 30% deviant tones ST + 0.1–0.5 kHz) were randomly mixed for 20 min/day during 1 month. Patient had to mark when the two sounds of the pair were similar or different. Control group included 26 patients from the waiting list (WLG). Patients were also divided according to the trained frequency and the deepest hearing-impaired frequency. Outcome parameters were set up according to the answer to the question “is your tinnitus better, same, or worse with the treatment?” (RESP), the tinnitus handicap inventory (THI) and the visual analogue scale from 1 to 10 on tinnitus intensity (VAS). Tinnitus improved in 42.2% of the patients (RESP). VAS and THI scores were reduced but only THI differences were statistically significant (P = 0.003). ADT patients improved significantly compared with WLG in RESP and THI scores (P < 0.01). Training frequencies one-octave below the tinnitus pitch (NONSAME) decreased significantly THI scores compared with patients trained frequencies similar to tinnitus pitch (SAME, P = 0.035). RESP and VAS scores decreased more in NONSAME group though differences were not significant. We did not find any differences when comparing the group training the deepest hearing-impaired frequency and the group who trained other frequencies. Auditory discrimination training significantly improved tinnitus handicap compared to a waiting list group. Those patients who trained frequencies one octave below the tinnitus pitch had better outcome than those who performed the ADT with frequencies similar to the tinnitus pitch (P = 0.035)
Literature
1.
go back to reference Neuman AC (2005) Central auditory system plasticity and aural rehabilitation of adults. J Rehabil Res Dev 42(4 Suppl 2):169–186CrossRefPubMed Neuman AC (2005) Central auditory system plasticity and aural rehabilitation of adults. J Rehabil Res Dev 42(4 Suppl 2):169–186CrossRefPubMed
2.
go back to reference Flor H, Birbaumer N, Braun C et al (1995) Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 375:482–484CrossRefPubMed Flor H, Birbaumer N, Braun C et al (1995) Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 375:482–484CrossRefPubMed
3.
go back to reference Robertson D, Irving DRF (1989) Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. J Comp Neurol 282:456–471CrossRefPubMed Robertson D, Irving DRF (1989) Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. J Comp Neurol 282:456–471CrossRefPubMed
4.
go back to reference Rajan R, Irvine DRF, Wise LZ, Heil P (1993) Effect of unilateral partial cochlear lesions in adult cats on the representation of lessoned and unlessoned cochleas in primary auditory cortex. J Comp Neurol 338:17–49CrossRefPubMed Rajan R, Irvine DRF, Wise LZ, Heil P (1993) Effect of unilateral partial cochlear lesions in adult cats on the representation of lessoned and unlessoned cochleas in primary auditory cortex. J Comp Neurol 338:17–49CrossRefPubMed
5.
go back to reference Schwaber MK, Garraghty PE, Kaas JH (1993) Neuroplasticity of the adult primate auditory cortex following cochlear hearing loss. Am J Otol 14(3):252–258PubMed Schwaber MK, Garraghty PE, Kaas JH (1993) Neuroplasticity of the adult primate auditory cortex following cochlear hearing loss. Am J Otol 14(3):252–258PubMed
6.
go back to reference Norena AJ, Eggermont JJ (2005) Enriched acoustic environment after noise trauma reduces hearing loss and prevents cortical map reorganization. J Neurosci 25:6999’705CrossRef Norena AJ, Eggermont JJ (2005) Enriched acoustic environment after noise trauma reduces hearing loss and prevents cortical map reorganization. J Neurosci 25:6999’705CrossRef
7.
go back to reference Norena AJ, Eggermont JJ (2006) Enriched acoustic environment after noise trauma abolishes neural signs of tinnitus. Neuroreport 17:559–563CrossRefPubMed Norena AJ, Eggermont JJ (2006) Enriched acoustic environment after noise trauma abolishes neural signs of tinnitus. Neuroreport 17:559–563CrossRefPubMed
8.
go back to reference Muhlnickel W, Elbert T, Taub E, Flor H (1998) Reorganization of auditory cortex in tinnitus. Proc Natl Acad Sci USA 95(17):10340–10343CrossRefPubMed Muhlnickel W, Elbert T, Taub E, Flor H (1998) Reorganization of auditory cortex in tinnitus. Proc Natl Acad Sci USA 95(17):10340–10343CrossRefPubMed
9.
go back to reference Eggermont JJ, Roberts LE (2004) The neuroscience of tinnitus. Trends Neurosci 27(11):676–682 ReviewCrossRefPubMed Eggermont JJ, Roberts LE (2004) The neuroscience of tinnitus. Trends Neurosci 27(11):676–682 ReviewCrossRefPubMed
10.
go back to reference Lockwood AH, Salvi RJ, Coad BA et al (1998) The functional neuroanatomy of tinnitus. Neurology 50:114–120PubMed Lockwood AH, Salvi RJ, Coad BA et al (1998) The functional neuroanatomy of tinnitus. Neurology 50:114–120PubMed
11.
go back to reference Weisz N, Voss S, Berg P, Elbert T (2004) Abnormal auditory mismatch response in tinnitus sufferers with high-frequency hearing loss is associated with subjective distress level. BMC Neurosci 5:8CrossRefPubMed Weisz N, Voss S, Berg P, Elbert T (2004) Abnormal auditory mismatch response in tinnitus sufferers with high-frequency hearing loss is associated with subjective distress level. BMC Neurosci 5:8CrossRefPubMed
12.
go back to reference Weisz N, Moratti S, Meinzer M et al (2005) Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography. PLoS Med 2:el53 Weisz N, Moratti S, Meinzer M et al (2005) Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography. PLoS Med 2:el53
13.
go back to reference Diesch D, Struve M, Rupp A, Ritter S, Hülse M et al (2004) Enhancement of steady-state auditory evoked magnetic fields in tinnitus. Eur J Neurosci 19:1093–1104CrossRefPubMed Diesch D, Struve M, Rupp A, Ritter S, Hülse M et al (2004) Enhancement of steady-state auditory evoked magnetic fields in tinnitus. Eur J Neurosci 19:1093–1104CrossRefPubMed
14.
go back to reference Pantev C, Oostenveld R, Engelien A et al (1998) Increased auditory cortical representation in musicians. Nature 392:811–814CrossRefPubMed Pantev C, Oostenveld R, Engelien A et al (1998) Increased auditory cortical representation in musicians. Nature 392:811–814CrossRefPubMed
15.
go back to reference Recanzone GH, Schreiner CE, Merzenic MM (1993) Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J Neurosci 13(1):87–103PubMed Recanzone GH, Schreiner CE, Merzenic MM (1993) Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J Neurosci 13(1):87–103PubMed
16.
go back to reference Herraiz C, Diges I, Cobo P (2007) Auditory discrimination therapy (ADT) for tinnitus management. Prog Brain Res 166:467–471CrossRefPubMed Herraiz C, Diges I, Cobo P (2007) Auditory discrimination therapy (ADT) for tinnitus management. Prog Brain Res 166:467–471CrossRefPubMed
17.
go back to reference Flor H, Hoffmann D, Struve M, Diesch E (2004) Auditory discrimination training for the treatment of tinnitus. Appl Psychophysiol Biofeedback 29:113–120CrossRefPubMed Flor H, Hoffmann D, Struve M, Diesch E (2004) Auditory discrimination training for the treatment of tinnitus. Appl Psychophysiol Biofeedback 29:113–120CrossRefPubMed
18.
go back to reference Herraiz C, Diges I, Cobo P et al (2009) Cortical reorganisation and tinnitus: principles of auditory discrimination training for tinnitus management. Eur Arch Otorhinolaryngol 266(1):9–16CrossRefPubMed Herraiz C, Diges I, Cobo P et al (2009) Cortical reorganisation and tinnitus: principles of auditory discrimination training for tinnitus management. Eur Arch Otorhinolaryngol 266(1):9–16CrossRefPubMed
19.
go back to reference Meikle MB (1985) Tinnitus outcomes assessment. In: Evered D, Lawrenson G (eds) Tinnitus. CIBA Foundation Symposium 85 London. Pitman, London, pp 303–306 Meikle MB (1985) Tinnitus outcomes assessment. In: Evered D, Lawrenson G (eds) Tinnitus. CIBA Foundation Symposium 85 London. Pitman, London, pp 303–306
20.
go back to reference Langguth B, Goodey R, Azevedo A et al (2007) Consensus for tinnitus patient assessment and treatment outcome measurement: Tinnitus Research Initiative meeting, Regensburg, July 2006. Prog Brain Res 166:525–536CrossRefPubMed Langguth B, Goodey R, Azevedo A et al (2007) Consensus for tinnitus patient assessment and treatment outcome measurement: Tinnitus Research Initiative meeting, Regensburg, July 2006. Prog Brain Res 166:525–536CrossRefPubMed
21.
go back to reference Herraiz C, Hernández Calvín FJ, Plaza G et al (2001) Evaluación de la incapacidad en los pacientes con acúfenos. Acta Otorrinolaringol Esp 52:142–145 Herraiz C, Hernández Calvín FJ, Plaza G et al (2001) Evaluación de la incapacidad en los pacientes con acúfenos. Acta Otorrinolaringol Esp 52:142–145
22.
go back to reference Noreña AJ, Chery-Croze S (2007) Enriched acoustic environment rescales auditory sensitivity. Neuroreport 18:1251–1255CrossRefPubMed Noreña AJ, Chery-Croze S (2007) Enriched acoustic environment rescales auditory sensitivity. Neuroreport 18:1251–1255CrossRefPubMed
23.
go back to reference Stevens C, Walker G, Boyer M et al (2007) Severe tinnitus and its effect on selective and divided attention. Int J Audiol 46(5):208–216CrossRefPubMed Stevens C, Walker G, Boyer M et al (2007) Severe tinnitus and its effect on selective and divided attention. Int J Audiol 46(5):208–216CrossRefPubMed
24.
go back to reference Searchfield GD, Morrison-Low J, Wise K (2007) Object identification and attention training for treating tinnitus. Prog Brain Res 166:441–460CrossRefPubMed Searchfield GD, Morrison-Low J, Wise K (2007) Object identification and attention training for treating tinnitus. Prog Brain Res 166:441–460CrossRefPubMed
25.
go back to reference Roberts LE, Gander PE, Bosnyak DJ (2008) Implications of evidence for remodeling of human auditory cortex for sensory training in tinnitus. Abstract OR-5. In: Proceedings of the IXth international tinnitus seminars, June 2008. Göteborg, Sweden Roberts LE, Gander PE, Bosnyak DJ (2008) Implications of evidence for remodeling of human auditory cortex for sensory training in tinnitus. Abstract OR-5. In: Proceedings of the IXth international tinnitus seminars, June 2008. Göteborg, Sweden
26.
go back to reference Norena A, Micheyl C, Chéry-Croze S et al (2002) Psychoacoustic characterization of the tinnitus spectrum: implications for the underlying mechanisms of tinnitus. Audiol Neurootol 7(6):358–369CrossRefPubMed Norena A, Micheyl C, Chéry-Croze S et al (2002) Psychoacoustic characterization of the tinnitus spectrum: implications for the underlying mechanisms of tinnitus. Audiol Neurootol 7(6):358–369CrossRefPubMed
27.
go back to reference Roberts L, Roberts LE, Moffat G, Bosnyak DJ (2006) Residual inhibition functions in relation to tinnitus spectra and auditory threshold shift. Acta Otolaryngol Suppl 556:27–33CrossRefPubMed Roberts L, Roberts LE, Moffat G, Bosnyak DJ (2006) Residual inhibition functions in relation to tinnitus spectra and auditory threshold shift. Acta Otolaryngol Suppl 556:27–33CrossRefPubMed
28.
go back to reference Schaette R, Kempter R (2006) Development of tinnitus-related neuronal hyperactivity through homeostatic plasticity after hearing loss: a computational model. Eur J Neurosci 23(11):3124–3138CrossRefPubMed Schaette R, Kempter R (2006) Development of tinnitus-related neuronal hyperactivity through homeostatic plasticity after hearing loss: a computational model. Eur J Neurosci 23(11):3124–3138CrossRefPubMed
Metadata
Title
Auditory discrimination training for tinnitus treatment: the effect of different paradigms
Authors
Carlos Herraiz
I. Diges
P. Cobo
J. M. Aparicio
A. Toledano
Publication date
01-07-2010
Publisher
Springer-Verlag
Published in
European Archives of Oto-Rhino-Laryngology / Issue 7/2010
Print ISSN: 0937-4477
Electronic ISSN: 1434-4726
DOI
https://doi.org/10.1007/s00405-009-1182-6

Other articles of this Issue 7/2010

European Archives of Oto-Rhino-Laryngology 7/2010 Go to the issue