Skip to main content
Top
Published in: Archives of Dermatological Research 4/2019

01-05-2019 | Original Paper

Modulation of lipid fluidity likely contributes to the fructose/xylitol-induced acceleration of epidermal permeability barrier recovery

Authors: Yuki Umino, Sari Ipponjima, Mitsuhiro Denda

Published in: Archives of Dermatological Research | Issue 4/2019

Login to get access

Abstract

We previously showed that topical application of hexoses such as fructose accelerates barrier recovery after disruption. We also showed that various hexoses and polyols interact with phospholipid and alter the phase transition temperature. Thus, we hypothesized that the improvement of barrier recovery by hexoses and polyols might be related to the interaction with phospholipid. Here, we tested this idea by examining the effects of xylitol (a component of some skin-care products) and fructose on lipid dynamics in an epidermal-equivalent model at the single-cell level by means of two-photon microscopy after staining with Laurdan, a fluorescent dye sensitive to the physical properties of its membrane environment. First, we confirmed that topical application of xylitol aqueous solution on tape-stripped human skin accelerated barrier recovery. Then, we examined changes of lipid fluidity in the epidermal-equivalent model after application of water or an aqueous solution of xylitol or fructose. Application of xylitol and/or fructose increased the lipid fluidity in the uppermost part of the stratum granulosum layer, compared to treatment with water alone, and accelerated the exocytosis of lamellar bodies to the intercellular domain between stratum corneum and stratum granulosum. Our results support the idea that the improvement of epidermal barrier homeostasis upon topical application of xylitol or fructose is due to increased lipid fluidity in the uppermost layer of the stratum granulosum, which enables accelerated release of lipid from the stratum granulosum, thereby improving the lamellar structure and accelerating epidermal permeability barrier recovery.
Appendix
Available only for authorised users
Literature
1.
go back to reference Denda M (2011) Effects of topical application of aqueous solutions of hexoses on epidermal permeability barrier recovery rate after barrier disruption. Exp Dermatol 20:943–944CrossRefPubMed Denda M (2011) Effects of topical application of aqueous solutions of hexoses on epidermal permeability barrier recovery rate after barrier disruption. Exp Dermatol 20:943–944CrossRefPubMed
2.
go back to reference Denda M, Fuziwara S, Inoue K (2003) Influx of calcium and chloride ions into epidermal keratinocytes regulates exocytosis of epidermal lamellar bodies and skin permeability barrier homeostasis. J Invest Dermatol 121:362–367CrossRefPubMed Denda M, Fuziwara S, Inoue K (2003) Influx of calcium and chloride ions into epidermal keratinocytes regulates exocytosis of epidermal lamellar bodies and skin permeability barrier homeostasis. J Invest Dermatol 121:362–367CrossRefPubMed
3.
go back to reference Denda M, Fuziwara S, Inoue K (2004) Association of cyclic adenosine monophosphate with permeability barrier homeostasis of murine skin. J Invest Dermatol 122:140–146CrossRefPubMed Denda M, Fuziwara S, Inoue K (2004) Association of cyclic adenosine monophosphate with permeability barrier homeostasis of murine skin. J Invest Dermatol 122:140–146CrossRefPubMed
4.
go back to reference Denda M, Kitamura K, Elias PM, Feingold KR (1997) Trans-4-(Aminomethyl)cyclohexane carboxylic acid (T-AMCHA), an anti-fibrinolytic agent, accelerates barrier recovery and prevents the epidermal hyperplasia induced by epidermal injury in hairless mice and humans. J Invest Dermatol 109:84–90CrossRefPubMed Denda M, Kitamura K, Elias PM, Feingold KR (1997) Trans-4-(Aminomethyl)cyclohexane carboxylic acid (T-AMCHA), an anti-fibrinolytic agent, accelerates barrier recovery and prevents the epidermal hyperplasia induced by epidermal injury in hairless mice and humans. J Invest Dermatol 109:84–90CrossRefPubMed
5.
go back to reference Denda M, Koyama J, Namba R, Horii I (1994) Stratum corneum lipid morphology and transepidermal water loss in normal skin and surfactant-induced scaly skin. Arch Dermatol Res 286:41–46CrossRefPubMed Denda M, Koyama J, Namba R, Horii I (1994) Stratum corneum lipid morphology and transepidermal water loss in normal skin and surfactant-induced scaly skin. Arch Dermatol Res 286:41–46CrossRefPubMed
6.
go back to reference Denda M, Sato J, Masuda Y, Tsuchiya T, Koyama J, Kuramoto M, Elias PM, Feingold KR (1998) Exposure to a dry environment enhances epidermal permeability barrier function. J Invest Dermatol 111:858–863CrossRefPubMed Denda M, Sato J, Masuda Y, Tsuchiya T, Koyama J, Kuramoto M, Elias PM, Feingold KR (1998) Exposure to a dry environment enhances epidermal permeability barrier function. J Invest Dermatol 111:858–863CrossRefPubMed
7.
go back to reference den Hollander L, Han H, de Winter M, Svensson L, Masich S, Daneholt B, Norlén L (2016) Skin lamellar bodies are not discrete vesicles but part of a tubuloreticular network. Acta Derm Venereol 96:303–308CrossRef den Hollander L, Han H, de Winter M, Svensson L, Masich S, Daneholt B, Norlén L (2016) Skin lamellar bodies are not discrete vesicles but part of a tubuloreticular network. Acta Derm Venereol 96:303–308CrossRef
8.
go back to reference Elias PM (2006) The epidermal permeability barrier from Saran Wrap to biosensor. In: Skin B, Elias PM, Feingold KR (eds), 2. Taylor & Francis, New York, pp 25–31 Elias PM (2006) The epidermal permeability barrier from Saran Wrap to biosensor. In: Skin B, Elias PM, Feingold KR (eds), 2. Taylor & Francis, New York, pp 25–31
9.
go back to reference Elias PM, Cullander C, Mauro T, Rassner U, Kömüves L, Brown BE, Menon GK (1998) The secretory granular cell: the outermost granular cell as a specialized secretory cell. J Investig Dermatol Symp Proc 3:87–100CrossRefPubMed Elias PM, Cullander C, Mauro T, Rassner U, Kömüves L, Brown BE, Menon GK (1998) The secretory granular cell: the outermost granular cell as a specialized secretory cell. J Investig Dermatol Symp Proc 3:87–100CrossRefPubMed
10.
go back to reference Feingold KR, Elias PM (2014) Role of lipids in the formation and maintenance of the cutaneous permeability barrier. Biochim Biophys Acta 1841:280–294CrossRefPubMed Feingold KR, Elias PM (2014) Role of lipids in the formation and maintenance of the cutaneous permeability barrier. Biochim Biophys Acta 1841:280–294CrossRefPubMed
11.
go back to reference Kalia YN, Pirot F, Guy RH (1996) Homogeneous transport in a heterogeneous membrane: water diffusion across human stratum corneum in vivo. Biophys J 71:2692–2700CrossRefPubMedPubMedCentral Kalia YN, Pirot F, Guy RH (1996) Homogeneous transport in a heterogeneous membrane: water diffusion across human stratum corneum in vivo. Biophys J 71:2692–2700CrossRefPubMedPubMedCentral
12.
go back to reference Korponyai C, Szél E, Behány Z, Varga E, Mohos G, Dura Á, Dikstein S, Kemény L, Erős G (2017) Effects of locally applied glycerol and xylitol on the hydration, barrier function and morphological parameters of the skin. Acta Derm Venereol 97:182–187CrossRefPubMed Korponyai C, Szél E, Behány Z, Varga E, Mohos G, Dura Á, Dikstein S, Kemény L, Erős G (2017) Effects of locally applied glycerol and xylitol on the hydration, barrier function and morphological parameters of the skin. Acta Derm Venereol 97:182–187CrossRefPubMed
13.
go back to reference Kumamoto J, Nakanishi S, Umino Y, Denda M (2018) Removal of nontoxic foreign material to the surface by cultured human epidermal keratinocytes in an epidermal-equivalent model. J Dermatol Sci 89:97–99CrossRefPubMed Kumamoto J, Nakanishi S, Umino Y, Denda M (2018) Removal of nontoxic foreign material to the surface by cultured human epidermal keratinocytes in an epidermal-equivalent model. J Dermatol Sci 89:97–99CrossRefPubMed
14.
go back to reference Mazeres S, Fereidouni F, Joly E (2017) Using spectral decomposition of the signals from laurdan-derived probes to evaluate the physical state of membranes in live cells. F1000 Res 6:763CrossRef Mazeres S, Fereidouni F, Joly E (2017) Using spectral decomposition of the signals from laurdan-derived probes to evaluate the physical state of membranes in live cells. F1000 Res 6:763CrossRef
15.
go back to reference Nakata S, Deguchi A, Seki Y, Furuta M, Fukuhara K, Nishihara S, Inoue K, Kumazawa N, Mashiko S, Fujihira S, Goto M, Denda M (2015) Characteristic responses of a phospholipid molecular layer to polyols. Colloid Surf B Biointerfaces 136:594–599CrossRefPubMed Nakata S, Deguchi A, Seki Y, Furuta M, Fukuhara K, Nishihara S, Inoue K, Kumazawa N, Mashiko S, Fujihira S, Goto M, Denda M (2015) Characteristic responses of a phospholipid molecular layer to polyols. Colloid Surf B Biointerfaces 136:594–599CrossRefPubMed
16.
go back to reference Nakata S, Nomura M, Yamaguchi Y, Hishida M, Kitahata H, Katsumoto Y, Denda M, Kumazawa N (2019) Characteristic responses of a 1,2-dipalmitoleoyl-sn-glycero-3- phosphoethanolamine molecular layer depending on the number of CH(OH) groups in polyols. Colloids Surf A Physicochem Eng Asp 560:149–153CrossRef Nakata S, Nomura M, Yamaguchi Y, Hishida M, Kitahata H, Katsumoto Y, Denda M, Kumazawa N (2019) Characteristic responses of a 1,2-dipalmitoleoyl-sn-glycero-3- phosphoethanolamine molecular layer depending on the number of CH(OH) groups in polyols. Colloids Surf A Physicochem Eng Asp 560:149–153CrossRef
17.
go back to reference Nakata S, Shiota T, Kumazawa N, Denda M (2012) Interaction between a monosaccharide and a phospholipid molecular layer. Colloids Surf A 405:14–18CrossRef Nakata S, Shiota T, Kumazawa N, Denda M (2012) Interaction between a monosaccharide and a phospholipid molecular layer. Colloids Surf A 405:14–18CrossRef
18.
go back to reference Norlén L (2001) Skin barrier formation: the membrane folding model. J Invest Dermatol 117:823–829CrossRefPubMed Norlén L (2001) Skin barrier formation: the membrane folding model. J Invest Dermatol 117:823–829CrossRefPubMed
19.
go back to reference Sanchez SA, Tricerri MA, Gratton E (2012) Laurdan generalized polarization fluctuations measures membrane packing micro-heterogeneity in vivo. Proc Natl Acad Sci USA 109:7314–7319CrossRefPubMed Sanchez SA, Tricerri MA, Gratton E (2012) Laurdan generalized polarization fluctuations measures membrane packing micro-heterogeneity in vivo. Proc Natl Acad Sci USA 109:7314–7319CrossRefPubMed
20.
go back to reference Sato J, Denda M, Nakanishi J, Koyama J (1998) Dry condition affects desquamation of stratum corneum in vivo. J Dermatol Sci 18:163–169CrossRefPubMed Sato J, Denda M, Nakanishi J, Koyama J (1998) Dry condition affects desquamation of stratum corneum in vivo. J Dermatol Sci 18:163–169CrossRefPubMed
Metadata
Title
Modulation of lipid fluidity likely contributes to the fructose/xylitol-induced acceleration of epidermal permeability barrier recovery
Authors
Yuki Umino
Sari Ipponjima
Mitsuhiro Denda
Publication date
01-05-2019
Publisher
Springer Berlin Heidelberg
Published in
Archives of Dermatological Research / Issue 4/2019
Print ISSN: 0340-3696
Electronic ISSN: 1432-069X
DOI
https://doi.org/10.1007/s00403-019-01905-0

Other articles of this Issue 4/2019

Archives of Dermatological Research 4/2019 Go to the issue