Skip to main content
Top
Published in: Archives of Orthopaedic and Trauma Surgery 10/2017

01-10-2017 | Hip Arthroplasty

Influence of undersized cementless hip stems on primary stability and strain distribution

Authors: Andreas Fottner, Matthias Woiczinski, Manuel Kistler, Christian Schröder, Tobias F. Schmidutz, Volkmar Jansson, Florian Schmidutz

Published in: Archives of Orthopaedic and Trauma Surgery | Issue 10/2017

Login to get access

Abstract

Introduction

Undersizing of cementless hip stems is a risk factor for aseptic loosening and early subsidence. The purpose of this study was to evaluate the effects of undersized stems and determine whether a biomechanical study can predict the clinical results.

Materials and methods

Three consecutive sizes of a clinically proven stem (CLS Spotorno) were implanted into six composite femora (size large, Sawbones®), respectively. According to the Canal Fill Index (CFI), two stems (size 11.25 and 12.5) were undersized (CFI < 80%) and one stem (size 13.75) had an appropriate size (CFI > 80%). The primary stability was evaluated by measurement of 3-dimensional (3D)-micromotions under physiological adapted load and surface strains were recorded before and after implantation to detect stress-shielding processes.

Results

Both undersized stems revealed significantly higher micromotions in all regions compared to the appropriate stem. The highest micromotions were registered at the distal tip of the three stem sizes. The changes in surface strain did not show a significant difference between the three stem sizes, but the highest strain reduction was observed proximally indicating a tendency for stress shielding.

Conclusions

This study confirms the clinical assumption that undersized stem result in a significantly reduced primary stability. Furthermore, in vitro studies allow to determine the effects of undersizing and stress shielding processes.
Literature
1.
go back to reference Cherian JJ, Jauregui JJ, Banerjee S et al (2015) What host factors affect aseptic loosening after THA and TKA? Clin Orthop Relat Res 473(8):2700–2709CrossRefPubMedPubMedCentral Cherian JJ, Jauregui JJ, Banerjee S et al (2015) What host factors affect aseptic loosening after THA and TKA? Clin Orthop Relat Res 473(8):2700–2709CrossRefPubMedPubMedCentral
2.
go back to reference Holt G, Murnaghan C, Reilly J, Meek RM (2007) The biology of aseptic osteolysis. Clin Orthop Relat Res 460:240–252PubMed Holt G, Murnaghan C, Reilly J, Meek RM (2007) The biology of aseptic osteolysis. Clin Orthop Relat Res 460:240–252PubMed
3.
go back to reference Buckwalter AE, Callaghan JJ, Liu SS et al (2006) Results of Charnley total hip arthroplasty with use of improved femoral cementing techniques. a concise follow-up, at a minimum of twenty-five years, of a previous report. J Bone Jt Surg Am 88(7):1481–1485 Buckwalter AE, Callaghan JJ, Liu SS et al (2006) Results of Charnley total hip arthroplasty with use of improved femoral cementing techniques. a concise follow-up, at a minimum of twenty-five years, of a previous report. J Bone Jt Surg Am 88(7):1481–1485
4.
go back to reference Rasquinha VJ, Ranawat CS, Dua V et al (2004) A prospective, randomized, double-blind study of smooth versus rough stems using cement fixation: minimum 5-year follow-up. J Arthroplast 19(7 Suppl 2):2–9CrossRef Rasquinha VJ, Ranawat CS, Dua V et al (2004) A prospective, randomized, double-blind study of smooth versus rough stems using cement fixation: minimum 5-year follow-up. J Arthroplast 19(7 Suppl 2):2–9CrossRef
5.
go back to reference Malchau H, Wang YX, Kärrholm J, Herberts P (1997) Scandinavian multicenter porous-coated anatomic total hip arthroplasty study. J Arthroplast 12:133–148CrossRef Malchau H, Wang YX, Kärrholm J, Herberts P (1997) Scandinavian multicenter porous-coated anatomic total hip arthroplasty study. J Arthroplast 12:133–148CrossRef
6.
7.
go back to reference Engh CA, Massin P (1989) Cementless total hip arthroplasty using the anatomic medullary locking stem. Results using a survivorship analysis. Clin Orthop Relat Res 249:141–158 Engh CA, Massin P (1989) Cementless total hip arthroplasty using the anatomic medullary locking stem. Results using a survivorship analysis. Clin Orthop Relat Res 249:141–158
8.
go back to reference Evola FR, Evola G, Graceffa A et al (2014) Performance of the CLS Spotorno uncemented stem in the third decade after implantation. Bone Jt J 96-B(4):455–461CrossRef Evola FR, Evola G, Graceffa A et al (2014) Performance of the CLS Spotorno uncemented stem in the third decade after implantation. Bone Jt J 96-B(4):455–461CrossRef
9.
go back to reference Hwang KT, Kim YH, Kim YS, Choi IY (2012) Total hip arthroplasty using cementless grit-blasted femoral component: a minimum 10-year follow-up study. J Arthroplast 27(8):1554–1561CrossRef Hwang KT, Kim YH, Kim YS, Choi IY (2012) Total hip arthroplasty using cementless grit-blasted femoral component: a minimum 10-year follow-up study. J Arthroplast 27(8):1554–1561CrossRef
10.
go back to reference Streit MR, Innmann MM, Merle C et al (2013) Long-term (20- to 25-year) results of an uncemented tapered titanium femoral component and factors affecting survivorship. Clin Orthop Relat Res 471(10):3262–3269CrossRefPubMedPubMedCentral Streit MR, Innmann MM, Merle C et al (2013) Long-term (20- to 25-year) results of an uncemented tapered titanium femoral component and factors affecting survivorship. Clin Orthop Relat Res 471(10):3262–3269CrossRefPubMedPubMedCentral
11.
go back to reference Kim YH, Kim VE (1993) Early migration of uncemented porous coated anatomic femoral component related to aseptic loosening. Clin Orthop Relat Res 295:146–155 Kim YH, Kim VE (1993) Early migration of uncemented porous coated anatomic femoral component related to aseptic loosening. Clin Orthop Relat Res 295:146–155
12.
go back to reference Nam D, Sauber TJ, Barrack T et al (2015) Radiographic parameters associated with pain following total hip and surface arthroplasty. J Arthroplast 30(3):495–501CrossRef Nam D, Sauber TJ, Barrack T et al (2015) Radiographic parameters associated with pain following total hip and surface arthroplasty. J Arthroplast 30(3):495–501CrossRef
13.
go back to reference Laine HJ, Pajamäki KJ, Moilanen T, Lehto MU (2001) The femoral canal fill of two different cementless stem designs. The accuracy of radiographs compared to computed tomographic scanning. Int Orthop 25(4):209–213CrossRefPubMedPubMedCentral Laine HJ, Pajamäki KJ, Moilanen T, Lehto MU (2001) The femoral canal fill of two different cementless stem designs. The accuracy of radiographs compared to computed tomographic scanning. Int Orthop 25(4):209–213CrossRefPubMedPubMedCentral
14.
go back to reference Laine HJ, Puolakka TJ, Moilanen T et al (2000) The effects of cementless femoral stem shape and proximal surface texture on ‘fit-and-fill’ characteristics and on bone remodeling. Int Orthop 24(4):184–190CrossRefPubMedPubMedCentral Laine HJ, Puolakka TJ, Moilanen T et al (2000) The effects of cementless femoral stem shape and proximal surface texture on ‘fit-and-fill’ characteristics and on bone remodeling. Int Orthop 24(4):184–190CrossRefPubMedPubMedCentral
15.
go back to reference Gheduzzi S, Miles AW (2007) A review of pre-clinical testing of femoral stem subsidence and comparison with clinical data. Proc Inst Mech Eng H 221(1):39–46CrossRefPubMed Gheduzzi S, Miles AW (2007) A review of pre-clinical testing of femoral stem subsidence and comparison with clinical data. Proc Inst Mech Eng H 221(1):39–46CrossRefPubMed
16.
go back to reference Bieger R, Ignatius A, Reichel H, Dürselen L (2013) Biomechanics of a short stem: in vitro primary stability and stress shielding of a conservative cementless hip stem. J Orthop Res 31(8):1180–1186CrossRefPubMed Bieger R, Ignatius A, Reichel H, Dürselen L (2013) Biomechanics of a short stem: in vitro primary stability and stress shielding of a conservative cementless hip stem. J Orthop Res 31(8):1180–1186CrossRefPubMed
17.
go back to reference Decking R, Puhl W, Simon U, Claes LE (2006) Changes in strain distribution of loaded proximal femora caused by different types of cementless femoral stems. Clin Biomech 21(5):495–501CrossRef Decking R, Puhl W, Simon U, Claes LE (2006) Changes in strain distribution of loaded proximal femora caused by different types of cementless femoral stems. Clin Biomech 21(5):495–501CrossRef
18.
go back to reference Pilliar RM, Lee JM, Maniatopoulos C (1986) Observations on the effect of movement on bone ingrowth into porous-surface implants. Clin Orthop 208:108–113 Pilliar RM, Lee JM, Maniatopoulos C (1986) Observations on the effect of movement on bone ingrowth into porous-surface implants. Clin Orthop 208:108–113
19.
go back to reference Enoksen CH, Gjerdet NR, Klaksvik J et al (2016) Deformation pattern and load transfer of an uncemented femoral stem with modular necks. An experimental study in human cadaver femurs. Clin Biomech (Bristol, Avon) 32:28–33CrossRef Enoksen CH, Gjerdet NR, Klaksvik J et al (2016) Deformation pattern and load transfer of an uncemented femoral stem with modular necks. An experimental study in human cadaver femurs. Clin Biomech (Bristol, Avon) 32:28–33CrossRef
20.
go back to reference Gardner MP, Chong AC, Pollock AG, Wooley PH (2010) Mechanical evaluation of large-size fourth-generation composite femur and tibia models. Ann Biomed Eng 38(3):613–620CrossRefPubMed Gardner MP, Chong AC, Pollock AG, Wooley PH (2010) Mechanical evaluation of large-size fourth-generation composite femur and tibia models. Ann Biomed Eng 38(3):613–620CrossRefPubMed
21.
go back to reference Heiner AD (2008) Structural properties of fourth-generation composite femurs and tibias. J Biomech 41(15):3282–3284CrossRefPubMed Heiner AD (2008) Structural properties of fourth-generation composite femurs and tibias. J Biomech 41(15):3282–3284CrossRefPubMed
22.
go back to reference Bergmann G, Deuretzbacher G, Heller M et al (2001) Hip contact forces and gait patterns from routine activities. J Biomech 34:859–871CrossRefPubMed Bergmann G, Deuretzbacher G, Heller M et al (2001) Hip contact forces and gait patterns from routine activities. J Biomech 34:859–871CrossRefPubMed
23.
go back to reference Damm P, Schwachmeyer V, Dymke J et al (2013) In vivo hip joint loads during three methods of walking with forearm crutches. Clin Biomech 28(5):530–535CrossRef Damm P, Schwachmeyer V, Dymke J et al (2013) In vivo hip joint loads during three methods of walking with forearm crutches. Clin Biomech 28(5):530–535CrossRef
24.
go back to reference Fottner A, Peter CV, Schmidutz F et al (2011) Biomechanical evaluation of different offset versions of a cementless hip prosthesis by 3-dimensional measurement of micromotions. Clin Biomech (Bristol, Avon) 26(8):830–835CrossRef Fottner A, Peter CV, Schmidutz F et al (2011) Biomechanical evaluation of different offset versions of a cementless hip prosthesis by 3-dimensional measurement of micromotions. Clin Biomech (Bristol, Avon) 26(8):830–835CrossRef
25.
go back to reference Fottner A, Schmid M, Birkenmaier C et al (2009) Biomechanical evaluation of two types of short-stemmed hip prostheses compared to the trust plate prosthesis by three-dimensional measurement of micromotions. Clin Biomech (Bristol, Avon) 24(5):429–434CrossRef Fottner A, Schmid M, Birkenmaier C et al (2009) Biomechanical evaluation of two types of short-stemmed hip prostheses compared to the trust plate prosthesis by three-dimensional measurement of micromotions. Clin Biomech (Bristol, Avon) 24(5):429–434CrossRef
26.
go back to reference Schmidutz F, Woiczinski M, Kistler M et al (2016) Influence of different sizes of composite femora on the biomechanical behavior of cementless hip prosthesis. Clin Biomech 41:60–65CrossRef Schmidutz F, Woiczinski M, Kistler M et al (2016) Influence of different sizes of composite femora on the biomechanical behavior of cementless hip prosthesis. Clin Biomech 41:60–65CrossRef
27.
go back to reference Görtz W, Nägerl UV, Nägerl H, Thomsen M (2002) Spatial micromovements of uncemented femoral components after torsional loads. J Biomech Eng 124(6):706–713CrossRefPubMed Görtz W, Nägerl UV, Nägerl H, Thomsen M (2002) Spatial micromovements of uncemented femoral components after torsional loads. J Biomech Eng 124(6):706–713CrossRefPubMed
28.
go back to reference Nadorf J, Thomsen M, Gantz S et al (2014) Fixation of the shorter cementless GTS™ stem: biomechanical comparison between a conventional and an innovative implant design. Arch Orthop Trauma Surg 134(5):719–726CrossRefPubMed Nadorf J, Thomsen M, Gantz S et al (2014) Fixation of the shorter cementless GTS™ stem: biomechanical comparison between a conventional and an innovative implant design. Arch Orthop Trauma Surg 134(5):719–726CrossRefPubMed
29.
go back to reference Pepke W, Nadorf J, Ewerbeck V et al (2014) Primary stability of the fitmore stem: biomechanical comparison. Int Orthop 38(3):483–488CrossRefPubMed Pepke W, Nadorf J, Ewerbeck V et al (2014) Primary stability of the fitmore stem: biomechanical comparison. Int Orthop 38(3):483–488CrossRefPubMed
30.
go back to reference Thomsen MN, Breusch SJ, Aldinger PR et al (2002) Robotically-milled bone cavities: a comparison with hand-broaching in different types of cementless hip stems. Acta Orthop Scand 73(4):379–385CrossRefPubMed Thomsen MN, Breusch SJ, Aldinger PR et al (2002) Robotically-milled bone cavities: a comparison with hand-broaching in different types of cementless hip stems. Acta Orthop Scand 73(4):379–385CrossRefPubMed
31.
go back to reference Tullos HS, McCaskill BL, Dickey R, Davidson J (1984) Total hip arthroplasty with a low-modulus porous-coated femoral component. J Bone Jt Surg Am 66(6):888–898CrossRef Tullos HS, McCaskill BL, Dickey R, Davidson J (1984) Total hip arthroplasty with a low-modulus porous-coated femoral component. J Bone Jt Surg Am 66(6):888–898CrossRef
32.
go back to reference Gamble P, de Beer J, Petruccelli D, Winemaker M (2010) The accuracy of digital templating in uncemented total hip arthroplasty. J Arthroplast 25(4):529–532CrossRef Gamble P, de Beer J, Petruccelli D, Winemaker M (2010) The accuracy of digital templating in uncemented total hip arthroplasty. J Arthroplast 25(4):529–532CrossRef
33.
go back to reference Kuroda K, Kabata T, Maeda T et al (2014) Do we need intraoperative radiographs for positioning the femoral component in total hip arthroplasty? Arch Orthop Trauma Surg 134(5):727–733CrossRefPubMed Kuroda K, Kabata T, Maeda T et al (2014) Do we need intraoperative radiographs for positioning the femoral component in total hip arthroplasty? Arch Orthop Trauma Surg 134(5):727–733CrossRefPubMed
34.
go back to reference Rivera F, Leonardi F, Evangelista A, Pierannunzii L (2016) Risk of stem undersizing with direct anterior approach for total hip arthroplasty. Hip Int 26(3):249–253CrossRefPubMed Rivera F, Leonardi F, Evangelista A, Pierannunzii L (2016) Risk of stem undersizing with direct anterior approach for total hip arthroplasty. Hip Int 26(3):249–253CrossRefPubMed
35.
go back to reference Mayle RE, Della Valle CJ (2012) Intra-operative fractures during THA: see it before it sees us. J Bone Jt Surg Br 94(11 Suppl A):26–31CrossRef Mayle RE, Della Valle CJ (2012) Intra-operative fractures during THA: see it before it sees us. J Bone Jt Surg Br 94(11 Suppl A):26–31CrossRef
36.
go back to reference Bühler DW, Berlemann U, Lippuner K et al (1997) Three-dimensional primary stability of cementless femoral stems. Clin Biomech 12(2):75–86CrossRef Bühler DW, Berlemann U, Lippuner K et al (1997) Three-dimensional primary stability of cementless femoral stems. Clin Biomech 12(2):75–86CrossRef
37.
go back to reference Spotorno L, Romagnoli S, Ivaldo N et al (1993) The CLS system: theoretical concept and results. Acta Orthop Belg 59(Suppl 1):144–148PubMed Spotorno L, Romagnoli S, Ivaldo N et al (1993) The CLS system: theoretical concept and results. Acta Orthop Belg 59(Suppl 1):144–148PubMed
38.
go back to reference Heller MO, Kassi JP, Perka C, Duda GN (2005) Cementless stem fixation and primary stability under physiological-like loads in vitro. Biomed Tech 50(12):394–399CrossRef Heller MO, Kassi JP, Perka C, Duda GN (2005) Cementless stem fixation and primary stability under physiological-like loads in vitro. Biomed Tech 50(12):394–399CrossRef
39.
go back to reference Kassi JP, Heller MO, Stoeckle U et al (2005) Stair climbing is more critical than walking in pre-clinical assessment of primary stability in cementless THA in vitro. J Biomech 38(5):1143–1154CrossRefPubMed Kassi JP, Heller MO, Stoeckle U et al (2005) Stair climbing is more critical than walking in pre-clinical assessment of primary stability in cementless THA in vitro. J Biomech 38(5):1143–1154CrossRefPubMed
40.
go back to reference Floerkemeier T, Budde S, Hurschler C et al (2017) Influence of size and CCD-angle of a short stem hip arthroplasty on strain patterns of the proximal femur—an experimental study. Acta Bioeng Biomech 19(1):141–149PubMed Floerkemeier T, Budde S, Hurschler C et al (2017) Influence of size and CCD-angle of a short stem hip arthroplasty on strain patterns of the proximal femur—an experimental study. Acta Bioeng Biomech 19(1):141–149PubMed
41.
go back to reference Bieger R, Ignatius A, Decking R et al (2012) Primary stability and strain distribution of cementless hip stems as a function of implant design. Clin Biomech 27(2):158–164CrossRef Bieger R, Ignatius A, Decking R et al (2012) Primary stability and strain distribution of cementless hip stems as a function of implant design. Clin Biomech 27(2):158–164CrossRef
42.
go back to reference Gronewold J, Berner S, Olender G et al (2014) Changes in strain patterns after implantation of a short stem with metaphyseal anchorage compared to a standard stem: an experimental study in synthetic bone. Orthop Rev (Pavia) 6(1):5211CrossRef Gronewold J, Berner S, Olender G et al (2014) Changes in strain patterns after implantation of a short stem with metaphyseal anchorage compared to a standard stem: an experimental study in synthetic bone. Orthop Rev (Pavia) 6(1):5211CrossRef
43.
go back to reference Kim YH, Kim JS, Cho SH (2001) Strain distribution in the proximal human femur. An in vitro comparison in the intact femur and after insertion of reference and experimental femoral stems. J Bone Jt Surg Br 83(2):295–301CrossRef Kim YH, Kim JS, Cho SH (2001) Strain distribution in the proximal human femur. An in vitro comparison in the intact femur and after insertion of reference and experimental femoral stems. J Bone Jt Surg Br 83(2):295–301CrossRef
44.
go back to reference Wik TS, Enoksen C, Klaksvik J et al (2011) In vitro testing of the deformation pattern and initial stability of a cementless stem coupled to an experimental femoral head, with increased offset and altered femoral neck angles. Proc Inst Mech Eng H 225(8):797–808CrossRefPubMed Wik TS, Enoksen C, Klaksvik J et al (2011) In vitro testing of the deformation pattern and initial stability of a cementless stem coupled to an experimental femoral head, with increased offset and altered femoral neck angles. Proc Inst Mech Eng H 225(8):797–808CrossRefPubMed
45.
go back to reference Wolf O, Mattsson P, Milbrink J et al (2010) Periprosthetic bone mineral density and fixation of the uncemented CLS stem related to different weight bearing regimes: a randomized study using DXA and RSA in 38 patients followed for 5 years. Acta Orthop 81(3):286–291CrossRefPubMedPubMedCentral Wolf O, Mattsson P, Milbrink J et al (2010) Periprosthetic bone mineral density and fixation of the uncemented CLS stem related to different weight bearing regimes: a randomized study using DXA and RSA in 38 patients followed for 5 years. Acta Orthop 81(3):286–291CrossRefPubMedPubMedCentral
46.
go back to reference Salemyr M, Muren O, Ahl T et al (2015) Lower periprosthetic bone loss and good fixation of an ultra-short stem compared to a conventional stem in uncemented total hip arthroplasty. Acta Orthop 86(6):659–666CrossRefPubMedPubMedCentral Salemyr M, Muren O, Ahl T et al (2015) Lower periprosthetic bone loss and good fixation of an ultra-short stem compared to a conventional stem in uncemented total hip arthroplasty. Acta Orthop 86(6):659–666CrossRefPubMedPubMedCentral
47.
go back to reference Sköldenberg OG, Bodén HS, Salemyr MO et al (2006) Periprosthetic proximal bone loss after uncemented hip arthroplasty is related to stem size: DXA measurements in 138 patients followed for 2–7 years. Acta Orthop 77(3):386–392CrossRefPubMed Sköldenberg OG, Bodén HS, Salemyr MO et al (2006) Periprosthetic proximal bone loss after uncemented hip arthroplasty is related to stem size: DXA measurements in 138 patients followed for 2–7 years. Acta Orthop 77(3):386–392CrossRefPubMed
48.
go back to reference Dorr LD, Faugere MC, Mackel AM et al (1993) Structural and cellular assessment of bone quality of proximal femur. Bone 14(3):231–242CrossRefPubMed Dorr LD, Faugere MC, Mackel AM et al (1993) Structural and cellular assessment of bone quality of proximal femur. Bone 14(3):231–242CrossRefPubMed
Metadata
Title
Influence of undersized cementless hip stems on primary stability and strain distribution
Authors
Andreas Fottner
Matthias Woiczinski
Manuel Kistler
Christian Schröder
Tobias F. Schmidutz
Volkmar Jansson
Florian Schmidutz
Publication date
01-10-2017
Publisher
Springer Berlin Heidelberg
Published in
Archives of Orthopaedic and Trauma Surgery / Issue 10/2017
Print ISSN: 0936-8051
Electronic ISSN: 1434-3916
DOI
https://doi.org/10.1007/s00402-017-2784-x

Other articles of this Issue 10/2017

Archives of Orthopaedic and Trauma Surgery 10/2017 Go to the issue