Skip to main content
Top
Published in: Archives of Orthopaedic and Trauma Surgery 12/2011

01-12-2011 | Basic Science

Biomechanics of vertebral compression fractures and clinical application

Authors: Michael A. Adams, Patricia Dolan

Published in: Archives of Orthopaedic and Trauma Surgery | Issue 12/2011

Login to get access

Abstract

Local biomechanical factors in the etiology of vertebral compression fractures are reviewed. The vertebral body is particularly vulnerable to compression fracture when its bone mineral density (BMD) falls with age. However, the risk of fracture, and the type of fracture produced, does not depend simply on BMD. Equally important is the state of degeneration of the adjacent intervertebral discs, which largely determines how compressive forces are distributed over the vertebral body. Disc height also influences load-sharing between the vertebral body and neural arch, and hence by Wolff’s Law can influence regional variations in trabecular density within the vertebral body. Vertebral deformity is not entirely attributable to trauma: it can result from the gradual accumulation of fatigue damage, and can progress by a quasi-continuous process of “creep”. Cement injection techniques such as vertebroplasty and kyphoplasty are valuable in the treatment of these fractures. Both techniques can stiffen a fractured vertebral body, and kyphoplasty may contribute towards restoring its height. The presence of cement can limit endplate deformation, and thereby partially reverse the adverse changes in load-sharing which follow vertebral fracture. Cement also reduces time-dependent “creep” deformation of damaged vertebrae.
Literature
1.
go back to reference Melton LJ 3rd, Riggs BL, Achenbach SJ, Amin S, Camp JJ, Rouleau PA et al (2006) Does reduced skeletal loading account for age-related bone loss? J Bone Miner Res 21(12):1847–1855PubMedCrossRef Melton LJ 3rd, Riggs BL, Achenbach SJ, Amin S, Camp JJ, Rouleau PA et al (2006) Does reduced skeletal loading account for age-related bone loss? J Bone Miner Res 21(12):1847–1855PubMedCrossRef
2.
go back to reference McBroom RJ, Hayes WC, Edwards WT, Goldberg RP, White AA 3rd (1985) Prediction of vertebral body compressive fracture using quantitative computed tomography. J Bone Joint Surg Am 67(8):1206–1214PubMed McBroom RJ, Hayes WC, Edwards WT, Goldberg RP, White AA 3rd (1985) Prediction of vertebral body compressive fracture using quantitative computed tomography. J Bone Joint Surg Am 67(8):1206–1214PubMed
3.
go back to reference Eswaran SK, Gupta A, Adams MF, Keaveny TM (2006) Cortical and trabecular load sharing in the human vertebral body. J Bone Miner Res 21(2):307–314PubMedCrossRef Eswaran SK, Gupta A, Adams MF, Keaveny TM (2006) Cortical and trabecular load sharing in the human vertebral body. J Bone Miner Res 21(2):307–314PubMedCrossRef
4.
go back to reference Fazzalari NL, Parkinson IH, Fogg QA, Sutton-Smith P (2006) Antero-postero differences in cortical thickness and cortical porosity of T12 to L5 vertebral bodies. Joint Bone Spine 73(3):293–297PubMedCrossRef Fazzalari NL, Parkinson IH, Fogg QA, Sutton-Smith P (2006) Antero-postero differences in cortical thickness and cortical porosity of T12 to L5 vertebral bodies. Joint Bone Spine 73(3):293–297PubMedCrossRef
5.
go back to reference Hulme PA, Boyd SK, Ferguson SJ (2007) Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength. Bone 41(6):946–957PubMedCrossRef Hulme PA, Boyd SK, Ferguson SJ (2007) Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength. Bone 41(6):946–957PubMedCrossRef
6.
go back to reference Zhao FD, Pollintine P, Hole BD, Adams MA, Dolan P (2009) Vertebral fractures usually affect the cranial endplate because it is thinner and supported by less-dense trabecular bone. Bone 44(2):372–379PubMedCrossRef Zhao FD, Pollintine P, Hole BD, Adams MA, Dolan P (2009) Vertebral fractures usually affect the cranial endplate because it is thinner and supported by less-dense trabecular bone. Bone 44(2):372–379PubMedCrossRef
7.
go back to reference Banse X, Devogelaer JP, Munting E, Delloye C, Cornu O, Grynpas M (2001) Inhomogeneity of human vertebral cancellous bone: systematic density and structure patterns inside the vertebral body. Bone 28(5):563–571PubMedCrossRef Banse X, Devogelaer JP, Munting E, Delloye C, Cornu O, Grynpas M (2001) Inhomogeneity of human vertebral cancellous bone: systematic density and structure patterns inside the vertebral body. Bone 28(5):563–571PubMedCrossRef
8.
go back to reference Adams MA, Pollintine P, Tobias JH, Wakley GK, Dolan P (2006) Intervertebral disc degeneration can predispose to anterior vertebral fractures in the thoracolumbar spine. J Bone Miner Res 21(9):1409–1416PubMedCrossRef Adams MA, Pollintine P, Tobias JH, Wakley GK, Dolan P (2006) Intervertebral disc degeneration can predispose to anterior vertebral fractures in the thoracolumbar spine. J Bone Miner Res 21(9):1409–1416PubMedCrossRef
9.
go back to reference Roberts S, Menage J, Urban JP (1989) Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc. Spine 14(2):166–174PubMedCrossRef Roberts S, Menage J, Urban JP (1989) Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc. Spine 14(2):166–174PubMedCrossRef
10.
go back to reference Roberts S, McCall IW, Menage J, Haddaway MJ, Eisenstein SM (1997) Does the thickness of the vertebral subchondral bone reflect the composition of the intervertebral disc? Eur Spine J 6(6):385–389PubMedCrossRef Roberts S, McCall IW, Menage J, Haddaway MJ, Eisenstein SM (1997) Does the thickness of the vertebral subchondral bone reflect the composition of the intervertebral disc? Eur Spine J 6(6):385–389PubMedCrossRef
11.
go back to reference Hou Y, Luo Z (2009) A study on the structural properties of the lumbar endplate: histological structure, the effect of bone density, and spinal level. Spine (Phila Pa 1976) 34(12):E427–E433CrossRef Hou Y, Luo Z (2009) A study on the structural properties of the lumbar endplate: histological structure, the effect of bone density, and spinal level. Spine (Phila Pa 1976) 34(12):E427–E433CrossRef
12.
go back to reference Adams MA, Green TP, Dolan P (1994) The strength in anterior bending of lumbar intervertebral discs. Spine 19(19):2197–2203PubMedCrossRef Adams MA, Green TP, Dolan P (1994) The strength in anterior bending of lumbar intervertebral discs. Spine 19(19):2197–2203PubMedCrossRef
13.
go back to reference Green TP, Adams MA, Dolan P (1993) Tensile properties of the annulus fibrosus. Part II ultimate tensile strength and fatigue life. Eur Spine J 2:209–214PubMedCrossRef Green TP, Adams MA, Dolan P (1993) Tensile properties of the annulus fibrosus. Part II ultimate tensile strength and fatigue life. Eur Spine J 2:209–214PubMedCrossRef
14.
go back to reference Setton LA, Zhu W, Weidenbaum M, Ratcliffe A, Mow VC (1993) Compressive properties of the cartilaginous end-plate of the baboon lumbar spine. J Orthop Res 11(2):228–239PubMedCrossRef Setton LA, Zhu W, Weidenbaum M, Ratcliffe A, Mow VC (1993) Compressive properties of the cartilaginous end-plate of the baboon lumbar spine. J Orthop Res 11(2):228–239PubMedCrossRef
15.
go back to reference Green TP, Allvey JC, Adams MA (1994) Spondylolysis. Bending of the inferior articular processes of lumbar vertebrae during simulated spinal movements. Spine 19(23):2683–2691PubMed Green TP, Allvey JC, Adams MA (1994) Spondylolysis. Bending of the inferior articular processes of lumbar vertebrae during simulated spinal movements. Spine 19(23):2683–2691PubMed
16.
17.
go back to reference Adams MA, Bogduk N, Burton K, Dolan P (2006) The biomechanics of back pain, 2nd edn. Churchill Livingstone, Edinburgh Adams MA, Bogduk N, Burton K, Dolan P (2006) The biomechanics of back pain, 2nd edn. Churchill Livingstone, Edinburgh
18.
go back to reference Adams MA, Hutton WC (1980) The effect of posture on the role of the apophysial joints in resisting intervertebral compressive forces. J Bone Joint Surg Br 62(3):358–362PubMed Adams MA, Hutton WC (1980) The effect of posture on the role of the apophysial joints in resisting intervertebral compressive forces. J Bone Joint Surg Br 62(3):358–362PubMed
19.
go back to reference Schendel MJ, Wood KB, Buttermann GR, Lewis JL, Ogilvie JW (1993) Experimental measurement of ligament force, facet force, and segment motion in the human lumbar spine. J Biomech 26(4–5):427–438PubMedCrossRef Schendel MJ, Wood KB, Buttermann GR, Lewis JL, Ogilvie JW (1993) Experimental measurement of ligament force, facet force, and segment motion in the human lumbar spine. J Biomech 26(4–5):427–438PubMedCrossRef
20.
go back to reference Dunlop RB, Adams MA, Hutton WC (1984) Disc space narrowing and the lumbar facet joints. J Bone Joint Surg Br 66(5):706–710PubMed Dunlop RB, Adams MA, Hutton WC (1984) Disc space narrowing and the lumbar facet joints. J Bone Joint Surg Br 66(5):706–710PubMed
21.
go back to reference Pollintine P, Przybyla AS, Dolan P, Adams MA (2004) Neural arch load-bearing in old and degenerated spines. J Biomech 37(2):197–204PubMedCrossRef Pollintine P, Przybyla AS, Dolan P, Adams MA (2004) Neural arch load-bearing in old and degenerated spines. J Biomech 37(2):197–204PubMedCrossRef
22.
go back to reference Adams MA, McNally DS, Chinn H, Dolan P (1994) Posture and the compressive strength of the lumbar spine. Clin Biomech 9:5–14CrossRef Adams MA, McNally DS, Chinn H, Dolan P (1994) Posture and the compressive strength of the lumbar spine. Clin Biomech 9:5–14CrossRef
23.
go back to reference McNally DS, Adams MA (1992) Internal intervertebral disc mechanics as revealed by stress profilometry. Spine 17(1):66–73PubMedCrossRef McNally DS, Adams MA (1992) Internal intervertebral disc mechanics as revealed by stress profilometry. Spine 17(1):66–73PubMedCrossRef
24.
go back to reference McMillan DW, McNally DS, Garbutt G, Adams MA (1996) Stress distributions inside intervertebral discs: the validity of experimental “stress profilometry”. Proc Inst Mech Eng H 210(2):81–87PubMedCrossRef McMillan DW, McNally DS, Garbutt G, Adams MA (1996) Stress distributions inside intervertebral discs: the validity of experimental “stress profilometry”. Proc Inst Mech Eng H 210(2):81–87PubMedCrossRef
25.
go back to reference Chu JY, Skrzypiec D, Pollintine P, Adams MA (2008) Can compressive stress be measured experimentally within the annulus fibrosus of degenerated intervertebral discs? Proc Inst Mech Eng H 222(2):161–170PubMed Chu JY, Skrzypiec D, Pollintine P, Adams MA (2008) Can compressive stress be measured experimentally within the annulus fibrosus of degenerated intervertebral discs? Proc Inst Mech Eng H 222(2):161–170PubMed
26.
go back to reference Adams MA, McNally DS, Dolan P (1996) ‘Stress’ distributions inside intervertebral discs. The effects of age and degeneration. J Bone Joint Surg Br 78(6):965–972PubMedCrossRef Adams MA, McNally DS, Dolan P (1996) ‘Stress’ distributions inside intervertebral discs. The effects of age and degeneration. J Bone Joint Surg Br 78(6):965–972PubMedCrossRef
27.
go back to reference Sato K, Kikuchi S, Yonezawa T (1999) In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine 24(23):2468–2474PubMedCrossRef Sato K, Kikuchi S, Yonezawa T (1999) In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine 24(23):2468–2474PubMedCrossRef
28.
go back to reference Adams MA, May S, Freeman BJ, Morrison HP, Dolan P (2000) Effects of backward bending on lumbar intervertebral discs. Relevance to physical therapy treatments for low back pain. Spine 25(4):431–437 discussion 438PubMedCrossRef Adams MA, May S, Freeman BJ, Morrison HP, Dolan P (2000) Effects of backward bending on lumbar intervertebral discs. Relevance to physical therapy treatments for low back pain. Spine 25(4):431–437 discussion 438PubMedCrossRef
29.
go back to reference Dolan P, Earley M, Adams MA (1994) Bending and compressive stresses acting on the lumbar spine during lifting activities. J Biomech 27(10):1237–1248PubMedCrossRef Dolan P, Earley M, Adams MA (1994) Bending and compressive stresses acting on the lumbar spine during lifting activities. J Biomech 27(10):1237–1248PubMedCrossRef
30.
go back to reference Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S (1994) A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 3(4):184–201PubMedCrossRef Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S (1994) A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 3(4):184–201PubMedCrossRef
31.
go back to reference Eastell R, Cedel SL, Wahner HW, Riggs BL, Melton LJd (1991) Classification of vertebral fractures. J Bone Miner Res 6(3):207–215PubMedCrossRef Eastell R, Cedel SL, Wahner HW, Riggs BL, Melton LJd (1991) Classification of vertebral fractures. J Bone Miner Res 6(3):207–215PubMedCrossRef
32.
go back to reference Perey O (1957) Fracture of the vertebral endplate. A biomechanical investigation. Acta Orthop Scand (Supp 25) Perey O (1957) Fracture of the vertebral endplate. A biomechanical investigation. Acta Orthop Scand (Supp 25)
33.
go back to reference Brinckmann P, Biggemann M, Hilweg D (1989) Prediction of the compressive strength of human lumbar vertebrae. Spine 14(6):606–610PubMedCrossRef Brinckmann P, Biggemann M, Hilweg D (1989) Prediction of the compressive strength of human lumbar vertebrae. Spine 14(6):606–610PubMedCrossRef
34.
35.
go back to reference Yoganandan N, Larson SJ, Gallagher M, Pintar FA, Reinartz J, Droese K (1994) Correlation of microtrauma in the lumbar spine with intraosseous pressures. Spine 19(4):435–440PubMedCrossRef Yoganandan N, Larson SJ, Gallagher M, Pintar FA, Reinartz J, Droese K (1994) Correlation of microtrauma in the lumbar spine with intraosseous pressures. Spine 19(4):435–440PubMedCrossRef
36.
go back to reference Jiang G, Luo J, Pollintine P, Dolan P, Adams MA, Eastell R (2010) Vertebral fractures in the elderly may not always be “osteoporotic”. Bone 47(1):111–116PubMedCrossRef Jiang G, Luo J, Pollintine P, Dolan P, Adams MA, Eastell R (2010) Vertebral fractures in the elderly may not always be “osteoporotic”. Bone 47(1):111–116PubMedCrossRef
37.
go back to reference Holmes AD, Hukins DW, Freemont AJ (1993) End-plate displacement during compression of lumbar vertebra-disc-vertebra segments and the mechanism of failure. Spine 18(1):128–135PubMedCrossRef Holmes AD, Hukins DW, Freemont AJ (1993) End-plate displacement during compression of lumbar vertebra-disc-vertebra segments and the mechanism of failure. Spine 18(1):128–135PubMedCrossRef
38.
go back to reference Brinckmann P, Frobin W, Hierholzer E, Horst M (1983) Deformation of the vertebral end-plate under axial loading of the spine. Spine 8(8):851–856PubMedCrossRef Brinckmann P, Frobin W, Hierholzer E, Horst M (1983) Deformation of the vertebral end-plate under axial loading of the spine. Spine 8(8):851–856PubMedCrossRef
39.
go back to reference Hansson T, Roos B (1983) The amount of bone mineral and Schmorl’s nodes in lumbar vertebrae. Spine 8(3):266–271PubMedCrossRef Hansson T, Roos B (1983) The amount of bone mineral and Schmorl’s nodes in lumbar vertebrae. Spine 8(3):266–271PubMedCrossRef
40.
go back to reference Hilton RC, Ball J, Benn RT (1976) Vertebral end-plate lesions (Schmorl’s nodes) in the dorsolumbar spine. Ann Rheum Dis 35(2):127–132PubMedCrossRef Hilton RC, Ball J, Benn RT (1976) Vertebral end-plate lesions (Schmorl’s nodes) in the dorsolumbar spine. Ann Rheum Dis 35(2):127–132PubMedCrossRef
41.
go back to reference Twomey L, Taylor J (1985) Age changes in lumbar intervertebral discs. Acta Orthop Scand 56(6):496–499PubMedCrossRef Twomey L, Taylor J (1985) Age changes in lumbar intervertebral discs. Acta Orthop Scand 56(6):496–499PubMedCrossRef
42.
go back to reference Mok FP, Samartzis D, Karppinen J, Luk KD, Fong DY, Cheung KM (2010) ISSLS prize winner: prevalence, determinants, and association of Schmorl nodes of the lumbar spine with disc degeneration: a population-based study of 2449 individuals. Spine (Phila Pa 1976) 35(21):1944–1952CrossRef Mok FP, Samartzis D, Karppinen J, Luk KD, Fong DY, Cheung KM (2010) ISSLS prize winner: prevalence, determinants, and association of Schmorl nodes of the lumbar spine with disc degeneration: a population-based study of 2449 individuals. Spine (Phila Pa 1976) 35(21):1944–1952CrossRef
43.
go back to reference Rao RD, Singrakhia MD (2003) Painful osteoporotic vertebral fracture. Pathogenesis, evaluation, and roles of vertebroplasty and kyphoplasty in its management. J Bone Joint Surg Am 85-A(10):2010–2022PubMed Rao RD, Singrakhia MD (2003) Painful osteoporotic vertebral fracture. Pathogenesis, evaluation, and roles of vertebroplasty and kyphoplasty in its management. J Bone Joint Surg Am 85-A(10):2010–2022PubMed
44.
go back to reference Rubin CT, Lanyon LE (1984) Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am 66(3):397–402PubMed Rubin CT, Lanyon LE (1984) Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am 66(3):397–402PubMed
45.
go back to reference Turner CH, Takano Y, Owan I (1995) Aging changes mechanical loading thresholds for bone formation in rats. J Bone Miner Res 10(10):1544–1549PubMedCrossRef Turner CH, Takano Y, Owan I (1995) Aging changes mechanical loading thresholds for bone formation in rats. J Bone Miner Res 10(10):1544–1549PubMedCrossRef
46.
go back to reference Bassey EJ, Rothwell MC, Littlewood JJ, Pye DW (1998) Pre- and postmenopausal women have different bone mineral density responses to the same high-impact exercise. J Bone Miner Res 13(12):1805–1813PubMedCrossRef Bassey EJ, Rothwell MC, Littlewood JJ, Pye DW (1998) Pre- and postmenopausal women have different bone mineral density responses to the same high-impact exercise. J Bone Miner Res 13(12):1805–1813PubMedCrossRef
47.
go back to reference Adams MA, Freeman BJ, Morrison HP, Nelson IW, Dolan P (2000) Mechanical initiation of intervertebral disc degeneration. Spine 25(13):1625–1636PubMedCrossRef Adams MA, Freeman BJ, Morrison HP, Nelson IW, Dolan P (2000) Mechanical initiation of intervertebral disc degeneration. Spine 25(13):1625–1636PubMedCrossRef
48.
go back to reference Yoganandan N, Myklebust JB, Wilson CR, Cusick JF, Sances A Jr (1988) Functional biomechanics of the thoracolumbar vertebral cortex. Clin Biomech 3:11–18CrossRef Yoganandan N, Myklebust JB, Wilson CR, Cusick JF, Sances A Jr (1988) Functional biomechanics of the thoracolumbar vertebral cortex. Clin Biomech 3:11–18CrossRef
49.
go back to reference Rockoff SD, Sweet E, Bleustein J (1969) The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif Tissue Res 3(2):163–175PubMedCrossRef Rockoff SD, Sweet E, Bleustein J (1969) The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif Tissue Res 3(2):163–175PubMedCrossRef
50.
go back to reference Myers ER, Wilson SE (1997) Biomechanics of osteoporosis and vertebral fracture. Spine 22(24 Suppl):25S–31SPubMedCrossRef Myers ER, Wilson SE (1997) Biomechanics of osteoporosis and vertebral fracture. Spine 22(24 Suppl):25S–31SPubMedCrossRef
51.
go back to reference Zioupos P, Hansen U, Currey JD (2008) Microcracking damage and the fracture process in relation to strain rate in human cortical bone tensile failure. J Biomech 41(14):2932–2939PubMedCrossRef Zioupos P, Hansen U, Currey JD (2008) Microcracking damage and the fracture process in relation to strain rate in human cortical bone tensile failure. J Biomech 41(14):2932–2939PubMedCrossRef
52.
go back to reference Brinckmann P, Biggemann M, Hilweg D (1988) Fatigue fracture of human lumbar vertebrae. Clin Biomech 3 (Suppl 1) Brinckmann P, Biggemann M, Hilweg D (1988) Fatigue fracture of human lumbar vertebrae. Clin Biomech 3 (Suppl 1)
53.
go back to reference Hansson TH, Keller TS, Spengler DM (1987) Mechanical behavior of the human lumbar spine. II. Fatigue strength during dynamic compressive loading. J Orthop Res 5(4):479–487 (published erratum appears in J Orthop Res 1988;6(3):465)PubMedCrossRef Hansson TH, Keller TS, Spengler DM (1987) Mechanical behavior of the human lumbar spine. II. Fatigue strength during dynamic compressive loading. J Orthop Res 5(4):479–487 (published erratum appears in J Orthop Res 1988;6(3):465)PubMedCrossRef
54.
go back to reference Liu YK, Njus G, Buckwalter J, Wakano K (1983) Fatigue response of lumbar intervertebral joints under axial cyclic loading. Spine 8(8):857–865PubMedCrossRef Liu YK, Njus G, Buckwalter J, Wakano K (1983) Fatigue response of lumbar intervertebral joints under axial cyclic loading. Spine 8(8):857–865PubMedCrossRef
55.
go back to reference Vernon-Roberts B, Pirie CJ (1973) Healing trabecular microfractures in the bodies of lumbar vertebrae. Ann Rheum Dis 32(5):406–412PubMedCrossRef Vernon-Roberts B, Pirie CJ (1973) Healing trabecular microfractures in the bodies of lumbar vertebrae. Ann Rheum Dis 32(5):406–412PubMedCrossRef
56.
go back to reference Currey JD (1965) Anelasticity in bone and echinoderm skeletons. J Exp Biol 43:279–292 Currey JD (1965) Anelasticity in bone and echinoderm skeletons. J Exp Biol 43:279–292
57.
go back to reference Mercer C, He MY, Wang R, Evans AG (2006) Mechanisms governing the inelastic deformation of cortical bone and application to trabecular bone. Acta Biomater 2(1):59–68PubMedCrossRef Mercer C, He MY, Wang R, Evans AG (2006) Mechanisms governing the inelastic deformation of cortical bone and application to trabecular bone. Acta Biomater 2(1):59–68PubMedCrossRef
58.
go back to reference Yamamoto E, Paul Crawford R, Chan DD, Keaveny TM (2006) Development of residual strains in human vertebral trabecular bone after prolonged static and cyclic loading at low load levels. J Biomech 39(10):1812–1818PubMedCrossRef Yamamoto E, Paul Crawford R, Chan DD, Keaveny TM (2006) Development of residual strains in human vertebral trabecular bone after prolonged static and cyclic loading at low load levels. J Biomech 39(10):1812–1818PubMedCrossRef
59.
go back to reference Pollintine P, Luo J, Offa-Jones B, Dolan P, Adams MA (2009) Bone creep can cause progressive vertebral deformity. Bone 45(3):466–472PubMedCrossRef Pollintine P, Luo J, Offa-Jones B, Dolan P, Adams MA (2009) Bone creep can cause progressive vertebral deformity. Bone 45(3):466–472PubMedCrossRef
60.
go back to reference Luo J, Pollintine P, Dolan P, Adams MA (2011) Accelerated "creep" deformation of human vertebrae. Presented to the International Society for the Study of the Lumbar Spine, Gothenburg, Sweden Luo J, Pollintine P, Dolan P, Adams MA (2011) Accelerated "creep" deformation of human vertebrae. Presented to the International Society for the Study of the Lumbar Spine, Gothenburg, Sweden
61.
go back to reference Luo J, Skrzypiec DM, Pollintine P, Adams MA, Annesley-Williams DJ, Dolan P (2007) Mechanical efficacy of vertebroplasty: influence of cement type, BMD, fracture severity, and disc degeneration. Bone 40(4):1110–1119PubMedCrossRef Luo J, Skrzypiec DM, Pollintine P, Adams MA, Annesley-Williams DJ, Dolan P (2007) Mechanical efficacy of vertebroplasty: influence of cement type, BMD, fracture severity, and disc degeneration. Bone 40(4):1110–1119PubMedCrossRef
62.
go back to reference Heini PF, Berlemann U, Kaufmann M, Lippuner K, Fankhauser C, van Landuyt P (2001) Augmentation of mechanical properties in osteoporotic vertebral bones—a biomechanical investigation of vertebroplasty efficacy with different bone cements. Eur Spine J 10(2):164–171PubMedCrossRef Heini PF, Berlemann U, Kaufmann M, Lippuner K, Fankhauser C, van Landuyt P (2001) Augmentation of mechanical properties in osteoporotic vertebral bones—a biomechanical investigation of vertebroplasty efficacy with different bone cements. Eur Spine J 10(2):164–171PubMedCrossRef
63.
go back to reference Pitton MB, Koch U, Drees P, Duber C (2009) Midterm follow-up of vertebral geometry and remodeling of the vertebral bidisk unit (VDU) after percutaneous vertebroplasty of osteoporotic vertebral fractures. Cardiovasc Intervent Radiol 32(5):1004–1010PubMedCrossRef Pitton MB, Koch U, Drees P, Duber C (2009) Midterm follow-up of vertebral geometry and remodeling of the vertebral bidisk unit (VDU) after percutaneous vertebroplasty of osteoporotic vertebral fractures. Cardiovasc Intervent Radiol 32(5):1004–1010PubMedCrossRef
64.
go back to reference Luo J, Daines L, Charalambous A, Adams MA, Annesley-Williams DJ, Dolan P (2009) Vertebroplasty: only small cement volumes are required to normalize stress distributions on the vertebral bodies. Spine (Phila Pa 1976) 34(26):2865–2873CrossRef Luo J, Daines L, Charalambous A, Adams MA, Annesley-Williams DJ, Dolan P (2009) Vertebroplasty: only small cement volumes are required to normalize stress distributions on the vertebral bodies. Spine (Phila Pa 1976) 34(26):2865–2873CrossRef
65.
go back to reference Luo J, Bertram W, Sangar D, Adams MA, Annesley-Williams DJ, Dolan P (2010) Is kyphoplasty better than vertebroplasty in restoring normal mechanical function to an injured spine? Bone 46:1050–1057PubMedCrossRef Luo J, Bertram W, Sangar D, Adams MA, Annesley-Williams DJ, Dolan P (2010) Is kyphoplasty better than vertebroplasty in restoring normal mechanical function to an injured spine? Bone 46:1050–1057PubMedCrossRef
66.
go back to reference Hulme PA, Krebs J, Ferguson SJ, Berlemann U (2006) Vertebroplasty and kyphoplasty: a systematic review of 69 clinical studies. Spine 31(17):1983–2001PubMedCrossRef Hulme PA, Krebs J, Ferguson SJ, Berlemann U (2006) Vertebroplasty and kyphoplasty: a systematic review of 69 clinical studies. Spine 31(17):1983–2001PubMedCrossRef
67.
go back to reference Adams MA, Dolan P, McNally DS (2009) The internal mechanical functioning of intervertebral discs and articular cartilage, and its relevance to matrix biology. Matrix Biol 28(7):384–389PubMedCrossRef Adams MA, Dolan P, McNally DS (2009) The internal mechanical functioning of intervertebral discs and articular cartilage, and its relevance to matrix biology. Matrix Biol 28(7):384–389PubMedCrossRef
Metadata
Title
Biomechanics of vertebral compression fractures and clinical application
Authors
Michael A. Adams
Patricia Dolan
Publication date
01-12-2011
Publisher
Springer-Verlag
Published in
Archives of Orthopaedic and Trauma Surgery / Issue 12/2011
Print ISSN: 0936-8051
Electronic ISSN: 1434-3916
DOI
https://doi.org/10.1007/s00402-011-1355-9

Other articles of this Issue 12/2011

Archives of Orthopaedic and Trauma Surgery 12/2011 Go to the issue