Skip to main content
Top
Published in: Acta Neuropathologica 5/2018

Open Access 01-11-2018 | Original Paper

Region-specific depletion of synaptic mitochondria in the brains of patients with Alzheimer’s disease

Authors: Eleanor K. Pickett, Jamie Rose, Caoimhe McCrory, Chris-Anne McKenzie, Declan King, Colin Smith, Thomas H. Gillingwater, Christopher M. Henstridge, Tara L. Spires-Jones

Published in: Acta Neuropathologica | Issue 5/2018

Login to get access

Abstract

Of all of the neuropathological changes observed in Alzheimer’s disease (AD), the loss of synapses correlates most strongly with cognitive decline. The precise mechanisms of synapse degeneration in AD remain unclear, although strong evidence indicates that pathological forms of both amyloid beta and tau contribute to synaptic dysfunction and loss. Synaptic mitochondria play a potentially important role in synapse degeneration in AD. Many studies in model systems indicate that amyloid beta and tau both impair mitochondrial function and impair transport of mitochondria to synapses. To date, much less is known about whether synaptic mitochondria are affected in human AD brain. Here, we used transmission electron microscopy to examine synapses and synaptic mitochondria in two cortical regions (BA41/42 and BA46) from eight AD and nine control cases. In this study, we observed 3000 synapses and find region-specific differences in synaptic mitochondria in AD cases compared to controls. In BA41/42, we observe a fourfold reduction in the proportion of presynaptic terminals that contain multiple mitochondria profiles in AD. We also observe ultrastructural changes including abnormal mitochondrial morphology, the presence of multivesicular bodies in synapses, and reduced synapse apposition length near plaques in AD. Together, our data show region-specific changes in synaptic mitochondria in AD and support the idea that the transport of mitochondria to presynaptic terminals or synaptic mitochondrial dynamics may be altered in AD.
Appendix
Available only for authorised users
Literature
2.
go back to reference Baddeley AD, Bressi S, Della Sala S, Logie R, Spinnler H (1991) The decline of working memory in Alzheimer’s disease. A longitudinal study. Brain 114(Pt 6):2521–2542CrossRef Baddeley AD, Bressi S, Della Sala S, Logie R, Spinnler H (1991) The decline of working memory in Alzheimer’s disease. A longitudinal study. Brain 114(Pt 6):2521–2542CrossRef
3.
go back to reference Bogan N, Cabot JB (1991) Light and electron microscopic analyses of intraspinal axon collaterals of sympathetic preganglionic neurons. Brain Res 541:241–251CrossRef Bogan N, Cabot JB (1991) Light and electron microscopic analyses of intraspinal axon collaterals of sympathetic preganglionic neurons. Brain Res 541:241–251CrossRef
11.
go back to reference DeKosky ST, Scheff SW, Styren SD (1996) Structural correlates of cognition in dementia: quantification and assessment of synapse change. Neurodegeneration 5:417–421CrossRef DeKosky ST, Scheff SW, Styren SD (1996) Structural correlates of cognition in dementia: quantification and assessment of synapse change. Neurodegeneration 5:417–421CrossRef
15.
go back to reference Drubin D, Kobayashi S, Kirschner M (1986) Association of tau protein with microtubules in living cells. Ann N Y Acad Sci 466:257–268CrossRef Drubin D, Kobayashi S, Kirschner M (1986) Association of tau protein with microtubules in living cells. Ann N Y Acad Sci 466:257–268CrossRef
16.
go back to reference Ebneth A, Godemann R, Stamer K, Illenberger S, Trinczek B, Mandelkow E (1998) Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer’s disease. J Cell Biol 143:777–794CrossRef Ebneth A, Godemann R, Stamer K, Illenberger S, Trinczek B, Mandelkow E (1998) Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer’s disease. J Cell Biol 143:777–794CrossRef
17.
go back to reference Ghadially FN (1997) Ultrastructural pathology of the cell and matrix. Butterworth-Heinemann, Oxford Ghadially FN (1997) Ultrastructural pathology of the cell and matrix. Butterworth-Heinemann, Oxford
23.
go back to reference Hirai I, Wang HG (2001) Survival-factor-induced phosphorylation of Bad results in its dissociation from Bcl-x(L) but not Bcl-2. Biochem J 359:345–352CrossRef Hirai I, Wang HG (2001) Survival-factor-induced phosphorylation of Bad results in its dissociation from Bcl-x(L) but not Bcl-2. Biochem J 359:345–352CrossRef
24.
go back to reference Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, Johnson AB, Kress Y, Vinters HV, Tabaton M et al (2001) Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci 21:3017–3023CrossRef Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, Johnson AB, Kress Y, Vinters HV, Tabaton M et al (2001) Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci 21:3017–3023CrossRef
25.
go back to reference Hiruma H, Katakura T, Takahashi S, Ichikawa T, Kawakami T (2003) Glutamate and amyloid beta-protein rapidly inhibit fast axonal transport in cultured rat hippocampal neurons by different mechanisms. J Neurosci 23:8967–8977CrossRef Hiruma H, Katakura T, Takahashi S, Ichikawa T, Kawakami T (2003) Glutamate and amyloid beta-protein rapidly inhibit fast axonal transport in cultured rat hippocampal neurons by different mechanisms. J Neurosci 23:8967–8977CrossRef
26.
go back to reference Ishihara T, Hong M, Zhang B, Nakagawa Y, Lee MK, Trojanowski JQ, Lee VM (1999) Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron 24:751–762CrossRef Ishihara T, Hong M, Zhang B, Nakagawa Y, Lee MK, Trojanowski JQ, Lee VM (1999) Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron 24:751–762CrossRef
39.
go back to reference Maurer I, Zierz S, Moller HJ (2000) A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients. Neurobiol Aging 21:455–462CrossRef Maurer I, Zierz S, Moller HJ (2000) A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients. Neurobiol Aging 21:455–462CrossRef
41.
go back to reference Minger SL, Honer WG, Esiri MM, McDonald B, Keene J, Nicoll JA, Carter J, Hope T, Francis PT (2001) Synaptic pathology in prefrontal cortex is present only with severe dementia in Alzheimer disease. J Neuropathol Exp Neurol 60:929–936CrossRef Minger SL, Honer WG, Esiri MM, McDonald B, Keene J, Nicoll JA, Carter J, Hope T, Francis PT (2001) Synaptic pathology in prefrontal cortex is present only with severe dementia in Alzheimer disease. J Neuropathol Exp Neurol 60:929–936CrossRef
42.
go back to reference Moreira PI, Santos MS, Moreno A, Oliveira C (2001) Amyloid beta-peptide promotes permeability transition pore in brain mitochondria. Biosci Rep 21:789–800CrossRef Moreira PI, Santos MS, Moreno A, Oliveira C (2001) Amyloid beta-peptide promotes permeability transition pore in brain mitochondria. Biosci Rep 21:789–800CrossRef
44.
go back to reference Moreira PI, Siedlak SL, Wang X, Santos MS, Oliveira CR, Tabaton M, Nunomura A, Szweda LI, Aliev G, Smith MA et al (2007) Increased autophagic degradation of mitochondria in Alzheimer disease. Autophagy 3:614–615CrossRef Moreira PI, Siedlak SL, Wang X, Santos MS, Oliveira CR, Tabaton M, Nunomura A, Szweda LI, Aliev G, Smith MA et al (2007) Increased autophagic degradation of mitochondria in Alzheimer disease. Autophagy 3:614–615CrossRef
48.
go back to reference Pigino G, Morfini G, Pelsman A, Mattson MP, Brady ST, Busciglio J (2003) Alzheimer’s presenilin 1 mutations impair kinesin-based axonal transport. J Neurosci 23:4499–4508CrossRef Pigino G, Morfini G, Pelsman A, Mattson MP, Brady ST, Busciglio J (2003) Alzheimer’s presenilin 1 mutations impair kinesin-based axonal transport. J Neurosci 23:4499–4508CrossRef
51.
60.
go back to reference Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580CrossRef Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580CrossRef
Metadata
Title
Region-specific depletion of synaptic mitochondria in the brains of patients with Alzheimer’s disease
Authors
Eleanor K. Pickett
Jamie Rose
Caoimhe McCrory
Chris-Anne McKenzie
Declan King
Colin Smith
Thomas H. Gillingwater
Christopher M. Henstridge
Tara L. Spires-Jones
Publication date
01-11-2018
Publisher
Springer Berlin Heidelberg
Published in
Acta Neuropathologica / Issue 5/2018
Print ISSN: 0001-6322
Electronic ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-018-1903-2

Other articles of this Issue 5/2018

Acta Neuropathologica 5/2018 Go to the issue