Skip to main content
Top
Published in: Acta Neuropathologica 3/2017

01-09-2017 | Original Paper

Nogo-A antibodies enhance axonal repair and remyelination in neuro-inflammatory and demyelinating pathology

Authors: Benjamin V. Ineichen, Sandra Kapitza, Christiane Bleul, Nicolas Good, Patricia S. Plattner, Maryam S. Seyedsadr, Julia Kaiser, Marc P. Schneider, Björn Zörner, Roland Martin, Michael Linnebank, Martin E. Schwab

Published in: Acta Neuropathologica | Issue 3/2017

Login to get access

Abstract

Two hallmarks of chronic multiple sclerosis lesions are the absence of significant spontaneous remyelination and primary as well as secondary neurodegeneration. Both characteristics may be influenced by the presence of inhibitory factors preventing myelin and neuronal repair. We investigated the potential of antibodies against Nogo-A, a well-known inhibitory protein for neuronal growth and plasticity, to enhance neuronal regeneration and remyelination in two animal models of multiple sclerosis. We induced a targeted experimental autoimmune encephalomyelitis (EAE) lesion in the dorsal funiculus of the cervical spinal cord of adult rats resulting in a large drop of skilled forelimb motor functions. We subsequently observed improved recovery of forelimb function after anti-Nogo-A treatment. Anterograde tracing of the corticospinal tract revealed enhanced axonal sprouting and arborisation within the spinal cord gray matter preferentially targeting pre-motor and motor spinal cord laminae on lesion level and above in the anti-Nogo-A-treated animals. An important additional effect of Nogo-A-neutralization was enhanced remyelination observed after lysolecithin-induced demyelination of spinal tracts. Whereas remyelinated fiber numbers in the lesion site were increased several fold, no effect of Nogo-A-inhibition was observed on oligodendrocyte precursor proliferation, migration, or differentiation. Enhancing remyelination and promoting axonal regeneration and plasticity represent important unmet medical needs in multiple sclerosis. Anti-Nogo-A antibodies hold promise as a potential new therapy for multiple sclerosis, in particular during the chronic phase of the disease when neurodegeneration and remyelination failure determine disability evolution.
Literature
2.
go back to reference Blakemore WF, Franklin RJ (2008) Remyelination in experimental models of toxin-induced demyelination. Curr Top Microbiol Immunol 318:193–212PubMed Blakemore WF, Franklin RJ (2008) Remyelination in experimental models of toxin-induced demyelination. Curr Top Microbiol Immunol 318:193–212PubMed
3.
go back to reference Chong SY, Rosenberg SS, Fancy SP, Zhao C, Shen YA, Hahn AT, McGee AW, Xu X, Zheng B, Zhang LI et al (2012) Neurite outgrowth inhibitor Nogo-A establishes spatial segregation and extent of oligodendrocyte myelination. Proc Natl Acad Sci USA 109:1299–1304. doi:10.1073/pnas.1113540109 CrossRefPubMed Chong SY, Rosenberg SS, Fancy SP, Zhao C, Shen YA, Hahn AT, McGee AW, Xu X, Zheng B, Zhang LI et al (2012) Neurite outgrowth inhibitor Nogo-A establishes spatial segregation and extent of oligodendrocyte myelination. Proc Natl Acad Sci USA 109:1299–1304. doi:10.​1073/​pnas.​1113540109 CrossRefPubMed
4.
go back to reference Daams M, Steenwijk MD, Wattjes MP, Geurts JJ, Uitdehaag BM, Tewarie PK, Balk LJ, Pouwels PJ, Killestein J, Barkhof F (2015) Unraveling the neuroimaging predictors for motor dysfunction in long-standing multiple sclerosis. Neurology 85:248–255. doi:10.1212/wnl.0000000000001756 CrossRefPubMed Daams M, Steenwijk MD, Wattjes MP, Geurts JJ, Uitdehaag BM, Tewarie PK, Balk LJ, Pouwels PJ, Killestein J, Barkhof F (2015) Unraveling the neuroimaging predictors for motor dysfunction in long-standing multiple sclerosis. Neurology 85:248–255. doi:10.​1212/​wnl.​0000000000001756​ CrossRefPubMed
8.
go back to reference Ferguson B, Matyszak MK, Esiri MM, Perry VH (1997) Axonal damage in acute multiple sclerosis lesions. Brain J Neurol 120(Pt 3):393–399CrossRef Ferguson B, Matyszak MK, Esiri MM, Perry VH (1997) Axonal damage in acute multiple sclerosis lesions. Brain J Neurol 120(Pt 3):393–399CrossRef
9.
go back to reference Fontoura P, Ho PP, DeVoss J, Zheng B, Lee BJ, Kidd BA, Garren H, Sobel RA, Robinson WH, Tessier-Lavigne M et al (2004) Immunity to the extracellular domain of Nogo-A modulates experimental autoimmune encephalomyelitis. J Immunol (Baltimore, Md: 1950) 173:6981–6992CrossRef Fontoura P, Ho PP, DeVoss J, Zheng B, Lee BJ, Kidd BA, Garren H, Sobel RA, Robinson WH, Tessier-Lavigne M et al (2004) Immunity to the extracellular domain of Nogo-A modulates experimental autoimmune encephalomyelitis. J Immunol (Baltimore, Md: 1950) 173:6981–6992CrossRef
14.
go back to reference Funfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, Brinkmann BG, Kassmann CM, Tzvetanova ID, Mobius W et al (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485:517–521. doi:10.1038/nature11007 PubMedPubMedCentral Funfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, Brinkmann BG, Kassmann CM, Tzvetanova ID, Mobius W et al (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485:517–521. doi:10.​1038/​nature11007 PubMedPubMedCentral
16.
go back to reference Ineichen BV, Plattner PS, Good N, Martin R, Linnebank M, Schwab ME (2017) Nogo-A antibodies for progressive multiple sclerosis. CNS Drugs 31:187–198CrossRefPubMed Ineichen BV, Plattner PS, Good N, Martin R, Linnebank M, Schwab ME (2017) Nogo-A antibodies for progressive multiple sclerosis. CNS Drugs 31:187–198CrossRefPubMed
17.
go back to reference Ineichen BV, Schnell L, Gullo M, Kaiser J, Schneider MP, Mosberger AC, Good N, Linnebank M, Schwab ME (2017) Direct, long-term intrathecal application of therapeutics to the rodent CNS. Nat Protoc 12:104–131. doi:10.1038/nprot.2016.151 CrossRefPubMed Ineichen BV, Schnell L, Gullo M, Kaiser J, Schneider MP, Mosberger AC, Good N, Linnebank M, Schwab ME (2017) Direct, long-term intrathecal application of therapeutics to the rodent CNS. Nat Protoc 12:104–131. doi:10.​1038/​nprot.​2016.​151 CrossRefPubMed
18.
go back to reference Ineichen BV, Weinmann O, Good N, Plattner P, Wicki C, Rushing EJ, Linnebank M, Schwab ME (2016) Sudan black: a fast, easy, and non-toxic method to assess myelin repair in demyelinating diseases. Neuropathol Appl Neurobiol. doi:10.1111/nan.12373 Ineichen BV, Weinmann O, Good N, Plattner P, Wicki C, Rushing EJ, Linnebank M, Schwab ME (2016) Sudan black: a fast, easy, and non-toxic method to assess myelin repair in demyelinating diseases. Neuropathol Appl Neurobiol. doi:10.​1111/​nan.​12373
20.
go back to reference Karnezis T, Mandemakers W, McQualter JL, Zheng B, Ho PP, Jordan KA, Murray BM, Barres B, Tessier-Lavigne M, Bernard CC (2004) The neurite outgrowth inhibitor Nogo A is involved in autoimmune-mediated demyelination. Nat Neurosci 7:736–744. doi:10.1038/nn1261 CrossRefPubMed Karnezis T, Mandemakers W, McQualter JL, Zheng B, Ho PP, Jordan KA, Murray BM, Barres B, Tessier-Lavigne M, Bernard CC (2004) The neurite outgrowth inhibitor Nogo A is involved in autoimmune-mediated demyelination. Nat Neurosci 7:736–744. doi:10.​1038/​nn1261 CrossRefPubMed
22.
23.
go back to reference Kerschensteiner M, Stadelmann C, Buddeberg BS, Merkler D, Bareyre FM, Anthony DC, Linington C, Bruck W, Schwab ME (2004) Targeting experimental autoimmune encephalomyelitis lesions to a predetermined axonal tract system allows for refined behavioral testing in an animal model of multiple sclerosis. Am J Pathol 164:1455–1469. doi:10.1016/S0002-9440(10)63232-4 CrossRefPubMedPubMedCentral Kerschensteiner M, Stadelmann C, Buddeberg BS, Merkler D, Bareyre FM, Anthony DC, Linington C, Bruck W, Schwab ME (2004) Targeting experimental autoimmune encephalomyelitis lesions to a predetermined axonal tract system allows for refined behavioral testing in an animal model of multiple sclerosis. Am J Pathol 164:1455–1469. doi:10.​1016/​S0002-9440(10)63232-4 CrossRefPubMedPubMedCentral
25.
go back to reference Kotter MR, Setzu A, Sim FJ, Van Rooijen N, Franklin RJ (2001) Macrophage depletion impairs oligodendrocyte remyelination following lysolecithin-induced demyelination. Glia 35:204–212CrossRefPubMed Kotter MR, Setzu A, Sim FJ, Van Rooijen N, Franklin RJ (2001) Macrophage depletion impairs oligodendrocyte remyelination following lysolecithin-induced demyelination. Glia 35:204–212CrossRefPubMed
26.
go back to reference Kotter MR, Zhao C, van Rooijen N, Franklin RJ (2005) Macrophage-depletion induced impairment of experimental CNS remyelination is associated with a reduced oligodendrocyte progenitor cell response and altered growth factor expression. Neurobiol Dis 18:166–175. doi:10.1016/j.nbd.2004.09.019 CrossRefPubMed Kotter MR, Zhao C, van Rooijen N, Franklin RJ (2005) Macrophage-depletion induced impairment of experimental CNS remyelination is associated with a reduced oligodendrocyte progenitor cell response and altered growth factor expression. Neurobiol Dis 18:166–175. doi:10.​1016/​j.​nbd.​2004.​09.​019 CrossRefPubMed
28.
go back to reference Liebscher T, Schnell L, Schnell D, Scholl J, Schneider R, Gullo M, Fouad K, Mir A, Rausch M, Kindler D et al (2005) Nogo-A antibody improves regeneration and locomotion of spinal cord-injured rats. Ann Neurol 58:706–719. doi:10.1002/ana.20627 CrossRefPubMed Liebscher T, Schnell L, Schnell D, Scholl J, Schneider R, Gullo M, Fouad K, Mir A, Rausch M, Kindler D et al (2005) Nogo-A antibody improves regeneration and locomotion of spinal cord-injured rats. Ann Neurol 58:706–719. doi:10.​1002/​ana.​20627 CrossRefPubMed
31.
go back to reference Maier IC, Baumann K, Thallmair M, Weinmann O, Scholl J, Schwab ME (2008) Constraint-induced movement therapy in the adult rat after unilateral corticospinal tract injury. J Neurosci Off J Soc Neurosci 28:9386–9403. doi:10.1523/jneurosci.1697-08.2008 CrossRef Maier IC, Baumann K, Thallmair M, Weinmann O, Scholl J, Schwab ME (2008) Constraint-induced movement therapy in the adult rat after unilateral corticospinal tract injury. J Neurosci Off J Soc Neurosci 28:9386–9403. doi:10.​1523/​jneurosci.​1697-08.​2008 CrossRef
32.
go back to reference Mei F, Fancy SP, Shen YA, Niu J, Zhao C, Presley B, Miao E, Lee S, Mayoral SR, Redmond SA et al (2014) Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nat Med 20:954–960. doi:10.1038/nm.3618 CrossRefPubMedPubMedCentral Mei F, Fancy SP, Shen YA, Niu J, Zhao C, Presley B, Miao E, Lee S, Mayoral SR, Redmond SA et al (2014) Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nat Med 20:954–960. doi:10.​1038/​nm.​3618 CrossRefPubMedPubMedCentral
33.
go back to reference Metz GA, Whishaw IQ (2002) Cortical and subcortical lesions impair skilled walking in the ladder rung walking test: a new task to evaluate fore- and hindlimb stepping, placing, and co-ordination. J Neurosci Methods 115:169–179CrossRefPubMed Metz GA, Whishaw IQ (2002) Cortical and subcortical lesions impair skilled walking in the ladder rung walking test: a new task to evaluate fore- and hindlimb stepping, placing, and co-ordination. J Neurosci Methods 115:169–179CrossRefPubMed
34.
go back to reference Mi S, Lee X, Shao Z, Thill G, Ji B, Relton J, Levesque M, Allaire N, Perrin S, Sands B et al (2004) LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci 7:221–228CrossRefPubMed Mi S, Lee X, Shao Z, Thill G, Ji B, Relton J, Levesque M, Allaire N, Perrin S, Sands B et al (2004) LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci 7:221–228CrossRefPubMed
35.
go back to reference Mi S, Miller RH, Tang W, Lee X, Hu B, Wu W, Zhang Y, Shields CB, Zhang Y, Miklasz S et al (2009) Promotion of central nervous system remyelination by induced differentiation of oligodendrocyte precursor cells. Ann Neurol 65:304–315. doi:10.1002/ana.21581 CrossRefPubMed Mi S, Miller RH, Tang W, Lee X, Hu B, Wu W, Zhang Y, Shields CB, Zhang Y, Miklasz S et al (2009) Promotion of central nervous system remyelination by induced differentiation of oligodendrocyte precursor cells. Ann Neurol 65:304–315. doi:10.​1002/​ana.​21581 CrossRefPubMed
37.
go back to reference Montoya CP, Campbell-Hope LJ, Pemberton KD, Dunnett SB (1991) The “staircase test”: a measure of independent forelimb reaching and grasping abilities in rats. J Neurosci Methods 36:219–228CrossRefPubMed Montoya CP, Campbell-Hope LJ, Pemberton KD, Dunnett SB (1991) The “staircase test”: a measure of independent forelimb reaching and grasping abilities in rats. J Neurosci Methods 36:219–228CrossRefPubMed
38.
go back to reference Oertle T, van der Haar ME, Bandtlow CE, Robeva A, Burfeind P, Buss A, Huber AB, Simonen M, Schnell L, Brosamle C et al (2003) Nogo-A inhibits neurite outgrowth and cell spreading with three discrete regions. J Neurosci Off J Soc Neurosci 23:5393–5406 Oertle T, van der Haar ME, Bandtlow CE, Robeva A, Burfeind P, Buss A, Huber AB, Simonen M, Schnell L, Brosamle C et al (2003) Nogo-A inhibits neurite outgrowth and cell spreading with three discrete regions. J Neurosci Off J Soc Neurosci 23:5393–5406
40.
go back to reference Organization WH (2008) Multiple Sclerosis International Federation. Atlas: Multiple Sclerosis Resources in the World 2008. World Health Organization, Geneva, pp 13–17 Organization WH (2008) Multiple Sclerosis International Federation. Atlas: Multiple Sclerosis Resources in the World 2008. World Health Organization, Geneva, pp 13–17
41.
go back to reference Petratos S, Ozturk E, Azari MF, Kenny R, Lee JY, Magee KA, Harvey AR, McDonald C, Taghian K, Moussa L et al (2012) Limiting multiple sclerosis related axonopathy by blocking Nogo receptor and CRMP-2 phosphorylation. Brain J Neurol 135:1794–1818. doi:10.1093/brain/aws100 CrossRef Petratos S, Ozturk E, Azari MF, Kenny R, Lee JY, Magee KA, Harvey AR, McDonald C, Taghian K, Moussa L et al (2012) Limiting multiple sclerosis related axonopathy by blocking Nogo receptor and CRMP-2 phosphorylation. Brain J Neurol 135:1794–1818. doi:10.​1093/​brain/​aws100 CrossRef
42.
43.
go back to reference Reindl M, Khantane S, Ehling R, Schanda K, Lutterotti A, Brinkhoff C, Oertle T, Schwab ME, Deisenhammer F, Berger T et al (2003) Serum and cerebrospinal fluid antibodies to Nogo-A in patients with multiple sclerosis and acute neurological disorders. J Neuroimmunol 145:139–147CrossRefPubMed Reindl M, Khantane S, Ehling R, Schanda K, Lutterotti A, Brinkhoff C, Oertle T, Schwab ME, Deisenhammer F, Berger T et al (2003) Serum and cerebrospinal fluid antibodies to Nogo-A in patients with multiple sclerosis and acute neurological disorders. J Neuroimmunol 145:139–147CrossRefPubMed
45.
go back to reference Sasaki M, Lankford KL, Brown RJ, Ruddle NH, Kocsis JD (2010) Focal experimental autoimmune encephalomyelitis in the Lewis rat induced by immunization with myelin oligodendrocyte glycoprotein and intraspinal injection of vascular endothelial growth factor. Glia 58:1523–1531. doi:10.1002/glia.21026 CrossRefPubMed Sasaki M, Lankford KL, Brown RJ, Ruddle NH, Kocsis JD (2010) Focal experimental autoimmune encephalomyelitis in the Lewis rat induced by immunization with myelin oligodendrocyte glycoprotein and intraspinal injection of vascular endothelial growth factor. Glia 58:1523–1531. doi:10.​1002/​glia.​21026 CrossRefPubMed
46.
go back to reference Satoh J, Onoue H, Arima K, Yamamura T (2005) Nogo-A and nogo receptor expression in demyelinating lesions of multiple sclerosis. J Neuropathol Exp Neurol 64:129–138CrossRefPubMed Satoh J, Onoue H, Arima K, Yamamura T (2005) Nogo-A and nogo receptor expression in demyelinating lesions of multiple sclerosis. J Neuropathol Exp Neurol 64:129–138CrossRefPubMed
51.
go back to reference Theotokis P, Lourbopoulos A, Touloumi O, Lagoudaki R, Kofidou E, Nousiopoulou E, Poulatsidou KN, Kesidou E, Tascos N, Spandou E et al (2012) Time course and spatial profile of Nogo-A expression in experimental autoimmune encephalomyelitis in C57BL/6 mice. J Neuropathol Exp Neurol 71:907–920. doi:10.1097/NEN.0b013e31826caebe CrossRefPubMed Theotokis P, Lourbopoulos A, Touloumi O, Lagoudaki R, Kofidou E, Nousiopoulou E, Poulatsidou KN, Kesidou E, Tascos N, Spandou E et al (2012) Time course and spatial profile of Nogo-A expression in experimental autoimmune encephalomyelitis in C57BL/6 mice. J Neuropathol Exp Neurol 71:907–920. doi:10.​1097/​NEN.​0b013e31826caebe​ CrossRefPubMed
52.
go back to reference Tomassini V, d’Ambrosio A, Petsas N, Wise RG, Sbardella E, Allen M, Tona F, Fanelli F, Foster C, Carni M et al (2016) The effect of inflammation and its reduction on brain plasticity in multiple sclerosis: MRI evidence. Hum Brain Mapp 37:2431–2445. doi:10.1002/hbm.23184 CrossRefPubMedPubMedCentral Tomassini V, d’Ambrosio A, Petsas N, Wise RG, Sbardella E, Allen M, Tona F, Fanelli F, Foster C, Carni M et al (2016) The effect of inflammation and its reduction on brain plasticity in multiple sclerosis: MRI evidence. Hum Brain Mapp 37:2431–2445. doi:10.​1002/​hbm.​23184 CrossRefPubMedPubMedCentral
55.
go back to reference Wahl AS, Omlor W, Rubio JC, Chen JL, Zheng H, Schroter A, Gullo M, Weinmann O, Kobayashi K, Helmchen F et al (2014) Neuronal repair. Asynchronous therapy restores motor control by rewiring of the rat corticospinal tract after stroke. Science (New York, NY) 344:1250–1255. doi:10.1126/science.1253050 CrossRef Wahl AS, Omlor W, Rubio JC, Chen JL, Zheng H, Schroter A, Gullo M, Weinmann O, Kobayashi K, Helmchen F et al (2014) Neuronal repair. Asynchronous therapy restores motor control by rewiring of the rat corticospinal tract after stroke. Science (New York, NY) 344:1250–1255. doi:10.​1126/​science.​1253050 CrossRef
56.
go back to reference Weinmann O, Schnell L, Ghosh A, Montani L, Wiessner C, Wannier T, Rouiller E, Mir A, Schwab ME (2006) Intrathecally infused antibodies against Nogo-A penetrate the CNS and downregulate the endogenous neurite growth inhibitor Nogo-A. Mol Cell Neurosci 32:161–173. doi:10.1016/j.mcn.2006.03.007 CrossRefPubMed Weinmann O, Schnell L, Ghosh A, Montani L, Wiessner C, Wannier T, Rouiller E, Mir A, Schwab ME (2006) Intrathecally infused antibodies against Nogo-A penetrate the CNS and downregulate the endogenous neurite growth inhibitor Nogo-A. Mol Cell Neurosci 32:161–173. doi:10.​1016/​j.​mcn.​2006.​03.​007 CrossRefPubMed
58.
go back to reference Woodruff RH, Franklin RJ (1999) Demyelination and remyelination of the caudal cerebellar peduncle of adult rats following stereotaxic injections of lysolecithin, ethidium bromide, and complement/anti-galactocerebroside: a comparative study. Glia 25:216–228CrossRefPubMed Woodruff RH, Franklin RJ (1999) Demyelination and remyelination of the caudal cerebellar peduncle of adult rats following stereotaxic injections of lysolecithin, ethidium bromide, and complement/anti-galactocerebroside: a comparative study. Glia 25:216–228CrossRefPubMed
59.
go back to reference Wootla B, Denic A, Watzlawik JO, Warrington AE, Rodriguez M (2015) Antibody-Mediated Oligodendrocyte Remyelination Promotes Axon Health in Progressive Demyelinating Disease Wootla B, Denic A, Watzlawik JO, Warrington AE, Rodriguez M (2015) Antibody-Mediated Oligodendrocyte Remyelination Promotes Axon Health in Progressive Demyelinating Disease
60.
go back to reference Wujek JR, Bjartmar C, Richer E, Ransohoff RM, Yu M, Tuohy VK, Trapp BD (2002) Axon loss in the spinal cord determines permanent neurological disability in an animal model of multiple sclerosis. J Neuropathol Exp Neurol 61:23–32CrossRefPubMed Wujek JR, Bjartmar C, Richer E, Ransohoff RM, Yu M, Tuohy VK, Trapp BD (2002) Axon loss in the spinal cord determines permanent neurological disability in an animal model of multiple sclerosis. J Neuropathol Exp Neurol 61:23–32CrossRefPubMed
Metadata
Title
Nogo-A antibodies enhance axonal repair and remyelination in neuro-inflammatory and demyelinating pathology
Authors
Benjamin V. Ineichen
Sandra Kapitza
Christiane Bleul
Nicolas Good
Patricia S. Plattner
Maryam S. Seyedsadr
Julia Kaiser
Marc P. Schneider
Björn Zörner
Roland Martin
Michael Linnebank
Martin E. Schwab
Publication date
01-09-2017
Publisher
Springer Berlin Heidelberg
Published in
Acta Neuropathologica / Issue 3/2017
Print ISSN: 0001-6322
Electronic ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-017-1745-3

Other articles of this Issue 3/2017

Acta Neuropathologica 3/2017 Go to the issue