Skip to main content
Top
Published in: Acta Neuropathologica 6/2012

01-06-2012 | Review Article

Saccular intracranial aneurysm: pathology and mechanisms

Authors: Juhana Frösen, Riikka Tulamo, Anders Paetau, Elisa Laaksamo, Miikka Korja, Aki Laakso, Mika Niemelä, Juha Hernesniemi

Published in: Acta Neuropathologica | Issue 6/2012

Login to get access

Abstract

Saccular intracranial aneurysms (sIA) are pouch-like pathological dilatations of intracranial arteries that develop when the cerebral artery wall becomes too weak to resist hemodynamic pressure and distends. Some sIAs remain stable over time, but in others mural cells die, the matrix degenerates, and eventually the wall ruptures, causing life-threatening hemorrhage. The wall of unruptured sIAs is characterized by myointimal hyperplasia and organizing thrombus, whereas that of ruptured sIAs is characterized by a decellularized, degenerated matrix and a poorly organized luminal thrombus. Cell-mediated and humoral inflammatory reaction is seen in both, but inflammation is clearly associated with degenerated and ruptured walls. Inflammation, however, seems to be a reaction to the ongoing degenerative processes, rather than the cause. Current data suggest that the loss of mural cells and wall degeneration are related to impaired endothelial function and high oxidative stress, caused in part by luminal thrombosis. The aberrant flow conditions caused by sIA geometry are the likely cause of the endothelial dysfunction, which results in accumulation of cytotoxic and pro-inflammatory substances into the sIA wall, as well as thrombus formation. This may start the processes that eventually can lead to the decellularized and degenerated sIA wall that is prone to rupture.
Literature
1.
go back to reference Alikhani M, Alikhani Z, Raptis M et al (2004) TNF-a in vivo stimulates apoptosis in fibroblasts through caspase-8 activation and modulates expression of pro-apoptotic genes. J Cell Physiol 201:341–348PubMedCrossRef Alikhani M, Alikhani Z, Raptis M et al (2004) TNF-a in vivo stimulates apoptosis in fibroblasts through caspase-8 activation and modulates expression of pro-apoptotic genes. J Cell Physiol 201:341–348PubMedCrossRef
2.
go back to reference Aoki T, Nishimura M (2011) The development and the use of experimental animal models to study the underlying mechanisms of CA formation. J Biomed Biotechnol 2011:535921PubMedCrossRef Aoki T, Nishimura M (2011) The development and the use of experimental animal models to study the underlying mechanisms of CA formation. J Biomed Biotechnol 2011:535921PubMedCrossRef
3.
go back to reference Bavinzski G, Talazoglu V, Killer M et al (1999) Gross and microscopic histopathological findings in aneurysms of the human brain treated with Guglielmi detachable coils. J Neurosurg 9:284–293 Bavinzski G, Talazoglu V, Killer M et al (1999) Gross and microscopic histopathological findings in aneurysms of the human brain treated with Guglielmi detachable coils. J Neurosurg 9:284–293
4.
go back to reference Beck J, Rohde S, el Beltagy M et al (2003) Difference in configuration of ruptured and unruptured intracranial aneurysms determined by biplanar digital subtraction angiography. Acta Neurochir (Wien) 145:861–865CrossRef Beck J, Rohde S, el Beltagy M et al (2003) Difference in configuration of ruptured and unruptured intracranial aneurysms determined by biplanar digital subtraction angiography. Acta Neurochir (Wien) 145:861–865CrossRef
5.
go back to reference Bor AS, Rinkel GJ, Adami J et al (2008) Risk of subarachnoid haemorrhage according to number of affected relatives: a population based case-control study. Brain 131:2662–2665PubMedCrossRef Bor AS, Rinkel GJ, Adami J et al (2008) Risk of subarachnoid haemorrhage according to number of affected relatives: a population based case-control study. Brain 131:2662–2665PubMedCrossRef
6.
go back to reference Boyle J, Weissberg P, Bennett M (2003) Tumor necrosis factor-alpha promotes macrophage-induced vascular smooth muscle cell apoptosis by direct and autocrine mechanisms. Arterioscler Thromb Vasc Biol 23:1553–1558PubMedCrossRef Boyle J, Weissberg P, Bennett M (2003) Tumor necrosis factor-alpha promotes macrophage-induced vascular smooth muscle cell apoptosis by direct and autocrine mechanisms. Arterioscler Thromb Vasc Biol 23:1553–1558PubMedCrossRef
7.
go back to reference Bruno G, Todor R, Lewis I et al (1998) Vascular extracellular matrix remodeling in cerebral aneurysms. J Neurosurg 89:431–440PubMedCrossRef Bruno G, Todor R, Lewis I et al (1998) Vascular extracellular matrix remodeling in cerebral aneurysms. J Neurosurg 89:431–440PubMedCrossRef
8.
go back to reference Chapman AB, Rubinstein D, Hughes R et al (1992) Intracranial aneurysms in autosomal dominant polycystic kidney disease. N Engl J Med 327:916–920PubMedCrossRef Chapman AB, Rubinstein D, Hughes R et al (1992) Intracranial aneurysms in autosomal dominant polycystic kidney disease. N Engl J Med 327:916–920PubMedCrossRef
9.
10.
go back to reference Chyatte D, Bruno G, Desai S et al (1999) Inflammation and intracranial aneurysms. Neurosurgery 45:1137–1146PubMedCrossRef Chyatte D, Bruno G, Desai S et al (1999) Inflammation and intracranial aneurysms. Neurosurgery 45:1137–1146PubMedCrossRef
11.
go back to reference Cloft HJ, Kallmes DF, Kallmes MH et al (1998) Prevalence of cerebral aneurysms in patients with fibromuscular dysplasia: a reassessment. J Neurosurg 88:436–440PubMedCrossRef Cloft HJ, Kallmes DF, Kallmes MH et al (1998) Prevalence of cerebral aneurysms in patients with fibromuscular dysplasia: a reassessment. J Neurosurg 88:436–440PubMedCrossRef
12.
go back to reference Conway JE, Hutchins GM, Tamargo RJ (1999) Marfan syndrome is not associated with intracranial aneurysms. Stroke 30:1632–1636PubMedCrossRef Conway JE, Hutchins GM, Tamargo RJ (1999) Marfan syndrome is not associated with intracranial aneurysms. Stroke 30:1632–1636PubMedCrossRef
13.
go back to reference Fabriek BO, Dijkstra CD, van den Berg TK (2005) The macrophage scavenger receptor CD163. Immunobiology 210:153–160PubMedCrossRef Fabriek BO, Dijkstra CD, van den Berg TK (2005) The macrophage scavenger receptor CD163. Immunobiology 210:153–160PubMedCrossRef
14.
go back to reference Ferns SP, Sprengers ME, van Rooij WJ et al (2009) Coiling of intracranial aneurysms: a systematic review on initial occlusion and reopening and retreatment rates. Stroke 40:e523–e529PubMedCrossRef Ferns SP, Sprengers ME, van Rooij WJ et al (2009) Coiling of intracranial aneurysms: a systematic review on initial occlusion and reopening and retreatment rates. Stroke 40:e523–e529PubMedCrossRef
15.
go back to reference Fontaine V, Jacob MP, Houard X et al (2002) Involvement of the mural thrombus as a site of protease release and activation in human aortic aneurysms. Am J Pathol 161:1701–1710PubMedCrossRef Fontaine V, Jacob MP, Houard X et al (2002) Involvement of the mural thrombus as a site of protease release and activation in human aortic aneurysms. Am J Pathol 161:1701–1710PubMedCrossRef
16.
go back to reference Frösen J, Piippo A, Paetau A et al (2004) Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases. Stroke 35:2287–2293PubMedCrossRef Frösen J, Piippo A, Paetau A et al (2004) Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases. Stroke 35:2287–2293PubMedCrossRef
17.
go back to reference Frösen J, Piippo A, Paetau A et al (2006) Growth factor receptor expression and remodeling of saccular cerebral artery aneurysm walls: implications for biological therapy preventing rupture. Neurosurgery 58:534–541PubMed Frösen J, Piippo A, Paetau A et al (2006) Growth factor receptor expression and remodeling of saccular cerebral artery aneurysm walls: implications for biological therapy preventing rupture. Neurosurgery 58:534–541PubMed
18.
go back to reference Frösen J, Marjamaa J, Myllärniemi M et al (2006) Contribution of mural and bone marrow-derived neointimal cells to thrombus organization and wall remodeling in a microsurgical murine saccular aneurysm model. Neurosurgery 58:936–944PubMedCrossRef Frösen J, Marjamaa J, Myllärniemi M et al (2006) Contribution of mural and bone marrow-derived neointimal cells to thrombus organization and wall remodeling in a microsurgical murine saccular aneurysm model. Neurosurgery 58:936–944PubMedCrossRef
19.
go back to reference Frösen J, Litmanen S, Tulamo R et al (2006) Matrix metalloproteinase-2 and -9 expression in the wall of saccular cerebral artery aneurysm. Neurosurgery 58:413–413 (Conference abstract) Frösen J, Litmanen S, Tulamo R et al (2006) Matrix metalloproteinase-2 and -9 expression in the wall of saccular cerebral artery aneurysm. Neurosurgery 58:413–413 (Conference abstract)
21.
go back to reference Gieteling EW, Rinkel GJ (2003) Characteristics of intracranial aneurysms and subarachnoid haemorrhage in patients with polycystic kidney disease. J Neurol 250:418–423PubMedCrossRef Gieteling EW, Rinkel GJ (2003) Characteristics of intracranial aneurysms and subarachnoid haemorrhage in patients with polycystic kidney disease. J Neurol 250:418–423PubMedCrossRef
23.
go back to reference Guo F, Li Z, Song L, Han T (2007) Increased apoptosis and cysteinyl aspartate specific protease-3 gene expression in human intracranial aneurysm. J Clin Neurosci 14:550–555PubMedCrossRef Guo F, Li Z, Song L, Han T (2007) Increased apoptosis and cysteinyl aspartate specific protease-3 gene expression in human intracranial aneurysm. J Clin Neurosci 14:550–555PubMedCrossRef
24.
go back to reference Hashimoto N, Handa H, Hazama F (1978) Experimentally induced cerebral aneurysms in rats. Surg Neurol 10:3–8PubMed Hashimoto N, Handa H, Hazama F (1978) Experimentally induced cerebral aneurysms in rats. Surg Neurol 10:3–8PubMed
25.
go back to reference Hashimoto N, Kim C, Kikuchi H (1987) Experimental induction of cerebral aneurysms in monkeys. J Neurosurg 67:903–905PubMedCrossRef Hashimoto N, Kim C, Kikuchi H (1987) Experimental induction of cerebral aneurysms in monkeys. J Neurosurg 67:903–905PubMedCrossRef
26.
go back to reference Hassler O (1961) Morphological studies on the large cerebral arteries, with reference to the aetiology of subarachnoid haemorrhage. Acta Psychiatr Scand Suppl 154:1–145PubMed Hassler O (1961) Morphological studies on the large cerebral arteries, with reference to the aetiology of subarachnoid haemorrhage. Acta Psychiatr Scand Suppl 154:1–145PubMed
27.
go back to reference Heiskanen O (1989) Ruptured intracranial arterial aneurysms of children and adolescents. Surgical and total management results. Childs Nerv Syst 5:66–70PubMedCrossRef Heiskanen O (1989) Ruptured intracranial arterial aneurysms of children and adolescents. Surgical and total management results. Childs Nerv Syst 5:66–70PubMedCrossRef
28.
go back to reference Heiskanen O, Vilkki J (1981) Intracranial arterial aneurysms in children and adolescents. Acta Neurochir (Wien) 59:55–63CrossRef Heiskanen O, Vilkki J (1981) Intracranial arterial aneurysms in children and adolescents. Acta Neurochir (Wien) 59:55–63CrossRef
29.
go back to reference Hessler JR, Morel DW, Lewis LJ et al (1983) Lipoprotein oxidation and lipoprotein-induced cytotoxicity. Arteriosclerosis 3:215–222PubMedCrossRef Hessler JR, Morel DW, Lewis LJ et al (1983) Lipoprotein oxidation and lipoprotein-induced cytotoxicity. Arteriosclerosis 3:215–222PubMedCrossRef
30.
go back to reference Houard X, Ollivier V, Louedec L (2009) Differential inflammatory activity across human abdominal aortic aneurysms reveals neutrophil-derived leukotriene B4 as a major chemotactic factor released from the intraluminal thrombus. FASEB J 23:1376–1383PubMedCrossRef Houard X, Ollivier V, Louedec L (2009) Differential inflammatory activity across human abdominal aortic aneurysms reveals neutrophil-derived leukotriene B4 as a major chemotactic factor released from the intraluminal thrombus. FASEB J 23:1376–1383PubMedCrossRef
31.
go back to reference Huttunen T, von und zu Fraunberg M, Frösen J et al (2010) Saccular intracranial aneurysm disease: distribution of site, size, and age suggests different etiologies for aneurysm formation and rupture in 316 familial and 1454 sporadic eastern Finnish patients. Neurosurgery 66:631–638PubMedCrossRef Huttunen T, von und zu Fraunberg M, Frösen J et al (2010) Saccular intracranial aneurysm disease: distribution of site, size, and age suggests different etiologies for aneurysm formation and rupture in 316 familial and 1454 sporadic eastern Finnish patients. Neurosurgery 66:631–638PubMedCrossRef
32.
go back to reference Inci S, Spetzler RF (2000) Intracranial aneurysms and arterial hypertension: a review and hypothesis. Surg Neurol 53:530–540PubMedCrossRef Inci S, Spetzler RF (2000) Intracranial aneurysms and arterial hypertension: a review and hypothesis. Surg Neurol 53:530–540PubMedCrossRef
33.
go back to reference Ingall T, Asplund K, Mahonen M et al (2000) A multinational comparison of subarachnoid hemorrhage epidemiology in the WHO MONICA stroke study. Stroke 31:1054–1061PubMedCrossRef Ingall T, Asplund K, Mahonen M et al (2000) A multinational comparison of subarachnoid hemorrhage epidemiology in the WHO MONICA stroke study. Stroke 31:1054–1061PubMedCrossRef
34.
go back to reference Isaksen J, Egge A, Waterloo K et al (2002) Risk factors for aneurysmal subarachnoid haemorrhage: the Tromsø study. J Neurol Neurosurg Psychiatry 73:185–187PubMedCrossRef Isaksen J, Egge A, Waterloo K et al (2002) Risk factors for aneurysmal subarachnoid haemorrhage: the Tromsø study. J Neurol Neurosurg Psychiatry 73:185–187PubMedCrossRef
35.
go back to reference Jamous MA, Nagahiro S, Kitazato KT (2007) Endothelial injury and inflammatory response induced by hemodynamic changes preceding intracranial aneurysm formation: experimental study in rats. J Neurosurg 107:405–411PubMedCrossRef Jamous MA, Nagahiro S, Kitazato KT (2007) Endothelial injury and inflammatory response induced by hemodynamic changes preceding intracranial aneurysm formation: experimental study in rats. J Neurosurg 107:405–411PubMedCrossRef
36.
go back to reference Jayaraman T, Berenstein V, Li X et al (2005) Tumor necrosis factor alpha is a key modulator of inflammation in cerebral aneurysms. Neurosurgery 57:558–564PubMedCrossRef Jayaraman T, Berenstein V, Li X et al (2005) Tumor necrosis factor alpha is a key modulator of inflammation in cerebral aneurysms. Neurosurgery 57:558–564PubMedCrossRef
37.
go back to reference Juvela S, Poussa K, Porras M (2001) Factors affecting formation and growth of intracranial aneurysms: a long-term follow-up study. Stroke 32:485–491PubMedCrossRef Juvela S, Poussa K, Porras M (2001) Factors affecting formation and growth of intracranial aneurysms: a long-term follow-up study. Stroke 32:485–491PubMedCrossRef
38.
go back to reference Juvela S, Poussa K, Porras M (2000) Natural history of unruptured intracranial aneurysms: probability of and risk factors for aneurysm rupture. J Neurosurg 93:379–387PubMedCrossRef Juvela S, Poussa K, Porras M (2000) Natural history of unruptured intracranial aneurysms: probability of and risk factors for aneurysm rupture. J Neurosurg 93:379–387PubMedCrossRef
39.
go back to reference Kataoka K, Taneda M, Asai T et al (1999) Structural fragility and inflammatory response of ruptured cerebral aneurysms. A comparative study between ruptured and unruptured cerebral aneurysms. Stroke 30:1396–1401PubMedCrossRef Kataoka K, Taneda M, Asai T et al (1999) Structural fragility and inflammatory response of ruptured cerebral aneurysms. A comparative study between ruptured and unruptured cerebral aneurysms. Stroke 30:1396–1401PubMedCrossRef
40.
go back to reference Kim C, Cervos-Navarro J, Kikuchi H et al (1993) Degenerative changes in the internal elastic lamina relating to the development of saccular cerebral aneurysms in rats. Acta Neurochir (Wien) 121:76–81CrossRef Kim C, Cervos-Navarro J, Kikuchi H et al (1993) Degenerative changes in the internal elastic lamina relating to the development of saccular cerebral aneurysms in rats. Acta Neurochir (Wien) 121:76–81CrossRef
41.
go back to reference Kim SC, Singh M, Huang J et al (1997) Matrix metalloproteinase-9 in cerebral aneurysms. Neurosurgery 41:642–666PubMed Kim SC, Singh M, Huang J et al (1997) Matrix metalloproteinase-9 in cerebral aneurysms. Neurosurgery 41:642–666PubMed
42.
go back to reference Klos A, Tenner AJ, Johswich KO et al (2009) The role of the anaphylatoxins in health and disease. Mol Immunol 46:2753–2766PubMedCrossRef Klos A, Tenner AJ, Johswich KO et al (2009) The role of the anaphylatoxins in health and disease. Mol Immunol 46:2753–2766PubMedCrossRef
43.
go back to reference Kondo S, Hashimoto N, Kikuchi H et al (1998) Apoptosis of medial smooth muscle cells in the development of saccular cerebral aneurysms in rats. Stroke 29:181–188PubMedCrossRef Kondo S, Hashimoto N, Kikuchi H et al (1998) Apoptosis of medial smooth muscle cells in the development of saccular cerebral aneurysms in rats. Stroke 29:181–188PubMedCrossRef
44.
go back to reference Korja M, Silventoinen K, McCarron P et al (2010) Genetic epidemiology of spontaneous subarachnoid hemorrhage: Nordic Twin Study. Stroke 41:2458–2462PubMedCrossRef Korja M, Silventoinen K, McCarron P et al (2010) Genetic epidemiology of spontaneous subarachnoid hemorrhage: Nordic Twin Study. Stroke 41:2458–2462PubMedCrossRef
45.
go back to reference Kosierkiewicz TA, Factor SM, Dickson DW et al (1994) Immunocytochemical studies of atherosclerotic lesions of cerebral berry aneurysms. J Neuropathol Exp Neurol 53:399–406PubMedCrossRef Kosierkiewicz TA, Factor SM, Dickson DW et al (1994) Immunocytochemical studies of atherosclerotic lesions of cerebral berry aneurysms. J Neuropathol Exp Neurol 53:399–406PubMedCrossRef
46.
go back to reference Krischek B, Kasuya H, Tajima A et al (2008) Network-based gene expression analysis of intracranial aneurysm tissue reveals role of antigen presenting cells. Neuroscience 154:1398–1407PubMedCrossRef Krischek B, Kasuya H, Tajima A et al (2008) Network-based gene expression analysis of intracranial aneurysm tissue reveals role of antigen presenting cells. Neuroscience 154:1398–1407PubMedCrossRef
47.
go back to reference Kurki MI, Häkkinen SK, Frösen J et al (2011) Upregulated signaling pathways in ruptured human saccular intracranial aneurysm wall: an emerging regulative role of Toll like receptor signaling and NF-KB, HIF1A and ETS transcription factors. Neurosurgery 68:1667–1676PubMedCrossRef Kurki MI, Häkkinen SK, Frösen J et al (2011) Upregulated signaling pathways in ruptured human saccular intracranial aneurysm wall: an emerging regulative role of Toll like receptor signaling and NF-KB, HIF1A and ETS transcription factors. Neurosurgery 68:1667–1676PubMedCrossRef
48.
go back to reference Laaksamo E, Tulamo R, Baumann M et al (2008) Involvement of mitogen-activated protein kinase signaling in growth and rupture of human intracranial aneurysms. Stroke 39:886–892PubMedCrossRef Laaksamo E, Tulamo R, Baumann M et al (2008) Involvement of mitogen-activated protein kinase signaling in growth and rupture of human intracranial aneurysms. Stroke 39:886–892PubMedCrossRef
49.
go back to reference Marchese E, Vignati A, Albanese A et al (2010) Comparative evaluation of genome-wide gene expression profiles in ruptured and unruptured human intracranial aneurysms. J Biol Regul Homeost Agents 24:185–195PubMed Marchese E, Vignati A, Albanese A et al (2010) Comparative evaluation of genome-wide gene expression profiles in ruptured and unruptured human intracranial aneurysms. J Biol Regul Homeost Agents 24:185–195PubMed
50.
go back to reference Michel JB, Thaunat O, Houard X et al (2007) Topological determinants and consequences of adventitial responses to arterial wall injury. Arterioscler Thromb Vasc Biol 27:1259–1268PubMedCrossRef Michel JB, Thaunat O, Houard X et al (2007) Topological determinants and consequences of adventitial responses to arterial wall injury. Arterioscler Thromb Vasc Biol 27:1259–1268PubMedCrossRef
51.
go back to reference Moestrup SK, Moller HJ (2004) CD163: a regulated hemoglobin scavenger receptor with a role in the anti-inflammatory response. Ann Med 36:347–354PubMedCrossRef Moestrup SK, Moller HJ (2004) CD163: a regulated hemoglobin scavenger receptor with a role in the anti-inflammatory response. Ann Med 36:347–354PubMedCrossRef
52.
53.
go back to reference Morimoto M, Miyamoto S, Mizoguchi A (2002) Mouse model of cerebral aneurysm: experimental induction by renal hypertension and local hemodynamic changes. Stroke 33:1911–1915PubMedCrossRef Morimoto M, Miyamoto S, Mizoguchi A (2002) Mouse model of cerebral aneurysm: experimental induction by renal hypertension and local hemodynamic changes. Stroke 33:1911–1915PubMedCrossRef
54.
go back to reference Nagakawa H, Suzuki S, Haneda M (2000) Significance of glomerular deposition of C3c and C3d in IgA nephropathy. Am J Nephrol 20:122–128CrossRef Nagakawa H, Suzuki S, Haneda M (2000) Significance of glomerular deposition of C3c and C3d in IgA nephropathy. Am J Nephrol 20:122–128CrossRef
55.
56.
57.
go back to reference Nielsen MJ, Moestrup SK (2009) Receptor targeting of hemoglobin mediated by the haptoglobins: roles beyond heme scavenging. Blood 114:764–771PubMedCrossRef Nielsen MJ, Moestrup SK (2009) Receptor targeting of hemoglobin mediated by the haptoglobins: roles beyond heme scavenging. Blood 114:764–771PubMedCrossRef
58.
go back to reference Nieuwkamp DJ, Setz LE, Algra A et al (2009) Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a metaanalysis. Lancet Neurol 8:635–642PubMedCrossRef Nieuwkamp DJ, Setz LE, Algra A et al (2009) Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a metaanalysis. Lancet Neurol 8:635–642PubMedCrossRef
59.
go back to reference Nurden AT (2011) Platelets, inflammation and tissue regeneration. Thromb Haemost 105(Suppl 1):S13–S33PubMedCrossRef Nurden AT (2011) Platelets, inflammation and tissue regeneration. Thromb Haemost 105(Suppl 1):S13–S33PubMedCrossRef
60.
go back to reference Nyström SH (1963) Development of intracranial aneurysms as revealed by electron microscopy. J Neurosurg 20:329–337CrossRef Nyström SH (1963) Development of intracranial aneurysms as revealed by electron microscopy. J Neurosurg 20:329–337CrossRef
61.
go back to reference Pentimalli L, Modesti A, Vignati A et al (2004) Role of apoptosis in intracranial aneurysm rupture. J Neurosurg 101:1018–1025PubMedCrossRef Pentimalli L, Modesti A, Vignati A et al (2004) Role of apoptosis in intracranial aneurysm rupture. J Neurosurg 101:1018–1025PubMedCrossRef
62.
go back to reference Pera J, Korostynski M, Krzyszkowski T et al (2010) Gene expression profiles in human ruptured and unruptured intracranial aneurysms: what is the role of inflammation? Stroke 41:224–231PubMedCrossRef Pera J, Korostynski M, Krzyszkowski T et al (2010) Gene expression profiles in human ruptured and unruptured intracranial aneurysms: what is the role of inflammation? Stroke 41:224–231PubMedCrossRef
63.
go back to reference Pope FM, Nicholls AC, Narcisi P et al (1981) Some patients with cerebral aneurysms are deficient in type III collagen. Lancet 1:973–975PubMedCrossRef Pope FM, Nicholls AC, Narcisi P et al (1981) Some patients with cerebral aneurysms are deficient in type III collagen. Lancet 1:973–975PubMedCrossRef
64.
go back to reference Raghavan ML, Ma B, Harbaugh RE (2005) Quantified aneurysm shape and rupture risk. J Neurosurg 102:355–362PubMedCrossRef Raghavan ML, Ma B, Harbaugh RE (2005) Quantified aneurysm shape and rupture risk. J Neurosurg 102:355–362PubMedCrossRef
65.
go back to reference Rinkel GJ, Djibuti M, Algra A et al (1998) Prevalence and risk of rupture of intracranial aneurysms: a systematic review. Stroke 29:251–256PubMedCrossRef Rinkel GJ, Djibuti M, Algra A et al (1998) Prevalence and risk of rupture of intracranial aneurysms: a systematic review. Stroke 29:251–256PubMedCrossRef
66.
go back to reference Ronkainen A, Hernesniemi J, Ryynanen M et al (1994) A ten percent prevalence of asymptomatic familial intracranial aneurysms: preliminary report on 110 magnetic resonance angiography studies in members of 21 Finnish familial intracranial aneurysm families. Neurosurgery 35:208–212PubMedCrossRef Ronkainen A, Hernesniemi J, Ryynanen M et al (1994) A ten percent prevalence of asymptomatic familial intracranial aneurysms: preliminary report on 110 magnetic resonance angiography studies in members of 21 Finnish familial intracranial aneurysm families. Neurosurgery 35:208–212PubMedCrossRef
67.
go back to reference Ronkainen A, Hernesniemi J, Ryynänen M (1993) Familial Subarachnoid Hemorrhage in East Finland, 1977–1990. Neurosurgery 33:787–797PubMedCrossRef Ronkainen A, Hernesniemi J, Ryynänen M (1993) Familial Subarachnoid Hemorrhage in East Finland, 1977–1990. Neurosurgery 33:787–797PubMedCrossRef
68.
go back to reference Rubinstein MK, Cohen NH (1964) Ehlers-Danlos syndrome associated with multiple intracranial aneurysms. Neurology 14:125–132PubMedCrossRef Rubinstein MK, Cohen NH (1964) Ehlers-Danlos syndrome associated with multiple intracranial aneurysms. Neurology 14:125–132PubMedCrossRef
69.
go back to reference Sakaki T, Kohmura E, Kishiguchi T et al (1997) Loss and apoptosis of smooth muscle cells in intracranial aneurysms. Studies with in situ DNA end labeling and antibody against single-stranded DNA. Acta Neurochir (Wien) 139:469–474CrossRef Sakaki T, Kohmura E, Kishiguchi T et al (1997) Loss and apoptosis of smooth muscle cells in intracranial aneurysms. Studies with in situ DNA end labeling and antibody against single-stranded DNA. Acta Neurochir (Wien) 139:469–474CrossRef
70.
go back to reference Sandvei MS, Romundstad PR, Müller TB et al (2009) Risk factors for aneurysmal subarachnoid hemorrhage in a prospective population study: the HUNT study in Norway. Stroke 40:1958–1962PubMedCrossRef Sandvei MS, Romundstad PR, Müller TB et al (2009) Risk factors for aneurysmal subarachnoid hemorrhage in a prospective population study: the HUNT study in Norway. Stroke 40:1958–1962PubMedCrossRef
71.
go back to reference Sawabe M (2010) Vascular aging: from molecular mechanism to clinical significance. Geriatr Gerontol Int 10(Suppl 1):S213–S220PubMedCrossRef Sawabe M (2010) Vascular aging: from molecular mechanism to clinical significance. Geriatr Gerontol Int 10(Suppl 1):S213–S220PubMedCrossRef
72.
go back to reference Scanarini M, Mingrino S, Giordano R et al (1978) Histological and ultrastructural study of intracranial saccular aneurysmal wall. Acta Neurochir (Wien) 43:171–182CrossRef Scanarini M, Mingrino S, Giordano R et al (1978) Histological and ultrastructural study of intracranial saccular aneurysmal wall. Acta Neurochir (Wien) 43:171–182CrossRef
73.
go back to reference Scanarini M, Mingrino S, Zuccarello M et al (1978) Scanning electron microscopy (s.e.m.) of biopsy specimens of ruptured intracranial saccular aneurysms. Acta Neuropathol 44:131–134PubMedCrossRef Scanarini M, Mingrino S, Zuccarello M et al (1978) Scanning electron microscopy (s.e.m.) of biopsy specimens of ruptured intracranial saccular aneurysms. Acta Neuropathol 44:131–134PubMedCrossRef
74.
go back to reference Schievink WI, Michels VV, Piepgras DG (1994) Neurovascular manifestations of heritable connective tissue disorders. A review. Stroke 25:889–903PubMedCrossRef Schievink WI, Michels VV, Piepgras DG (1994) Neurovascular manifestations of heritable connective tissue disorders. A review. Stroke 25:889–903PubMedCrossRef
75.
go back to reference Schievink WI, Schaid DJ, Michels VV et al (1995) Familial aneurysmal subarachnoid hemorrhage: a community-based study. J Neurosurg 83:426–429PubMedCrossRef Schievink WI, Schaid DJ, Michels VV et al (1995) Familial aneurysmal subarachnoid hemorrhage: a community-based study. J Neurosurg 83:426–429PubMedCrossRef
76.
go back to reference Shojima M, Oshima M, Takagi K et al (2004) Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 35:2500–2505PubMedCrossRef Shojima M, Oshima M, Takagi K et al (2004) Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 35:2500–2505PubMedCrossRef
77.
go back to reference Shojima M, Oshima M, Takagi K et al (2005) Role of the bloodstream impacting force and the local pressure elevation in the rupture of cerebral aneurysms. Stroke 36:1933–1938PubMedCrossRef Shojima M, Oshima M, Takagi K et al (2005) Role of the bloodstream impacting force and the local pressure elevation in the rupture of cerebral aneurysms. Stroke 36:1933–1938PubMedCrossRef
78.
go back to reference Soehnlein O, Weber C, Lindbom L (2009) Neutrophil granule proteins tune monocytic cell function. Trens Immunol 30:538–546CrossRef Soehnlein O, Weber C, Lindbom L (2009) Neutrophil granule proteins tune monocytic cell function. Trens Immunol 30:538–546CrossRef
79.
go back to reference Stegmayr B, Eriksson M, Asplund K (2004) Declining mortality from subarachnoid hemorrhage: changes in incidence and case fatality from 1985 through 2000. Stroke 35:2059–2063PubMedCrossRef Stegmayr B, Eriksson M, Asplund K (2004) Declining mortality from subarachnoid hemorrhage: changes in incidence and case fatality from 1985 through 2000. Stroke 35:2059–2063PubMedCrossRef
82.
go back to reference Szikora I, Seifert P, Hanzely Z et al (2006) Histopathologic evaluation of aneurysms treated with Guglielmi detachable coils or matrix detachable microcoils. AJNR Am J Neuroradiol 27:283–288PubMed Szikora I, Seifert P, Hanzely Z et al (2006) Histopathologic evaluation of aneurysms treated with Guglielmi detachable coils or matrix detachable microcoils. AJNR Am J Neuroradiol 27:283–288PubMed
83.
go back to reference Tedgui A, Lever MJ (1984) Filtration through damaged and undamaged rabbit thoracic aorta. Am J Physiol 247:H784–H791PubMed Tedgui A, Lever MJ (1984) Filtration through damaged and undamaged rabbit thoracic aorta. Am J Physiol 247:H784–H791PubMed
84.
go back to reference Todor DR, Lewis I, Bruno G et al (1998) Identification of a serum gelatinase associated with the occurrence of cerebral aneurysms as pro-matrix metalloproteinase-2. Stroke 29:1580–1583PubMedCrossRef Todor DR, Lewis I, Bruno G et al (1998) Identification of a serum gelatinase associated with the occurrence of cerebral aneurysms as pro-matrix metalloproteinase-2. Stroke 29:1580–1583PubMedCrossRef
85.
go back to reference Tulamo R, Frösen J, Junnikkala S et al (2006) Complement activation associates with saccular cerebral artery aneurysm wall degeneration and rupture. Neurosurgery 59:1069–1076PubMed Tulamo R, Frösen J, Junnikkala S et al (2006) Complement activation associates with saccular cerebral artery aneurysm wall degeneration and rupture. Neurosurgery 59:1069–1076PubMed
86.
go back to reference Tulamo R, Frösen J, Junnikkala S et al (2010) Complement system becomes activated by the classical pathway in intracranial aneurysm walls. Lab Invest 90:168–179PubMedCrossRef Tulamo R, Frösen J, Junnikkala S et al (2010) Complement system becomes activated by the classical pathway in intracranial aneurysm walls. Lab Invest 90:168–179PubMedCrossRef
87.
go back to reference Tulamo R, Frösen J, Paetau A et al (2010) Lack of complement inhibitors in the outer intracranial artery aneurysm wall associates with complement terminal pathway activation. Am J Pathol 177:3224–3232PubMedCrossRef Tulamo R, Frösen J, Paetau A et al (2010) Lack of complement inhibitors in the outer intracranial artery aneurysm wall associates with complement terminal pathway activation. Am J Pathol 177:3224–3232PubMedCrossRef
88.
go back to reference Ueda S, Masutani H, Nakamura H et al (2002) Redox control of cell death. Antioxid Redox Signal 4:405–414PubMedCrossRef Ueda S, Masutani H, Nakamura H et al (2002) Redox control of cell death. Antioxid Redox Signal 4:405–414PubMedCrossRef
89.
go back to reference Ujiie H, Tachibana H, Hiramatsu O et al (1999) Effects of size and shape (aspect ratio) on the hemodynamics of saccular aneurysms: a possible index for surgical treatment of intracranial aneurysms. Neurosurgery 45:119–129PubMedCrossRef Ujiie H, Tachibana H, Hiramatsu O et al (1999) Effects of size and shape (aspect ratio) on the hemodynamics of saccular aneurysms: a possible index for surgical treatment of intracranial aneurysms. Neurosurgery 45:119–129PubMedCrossRef
90.
go back to reference Virchow VR (1847) Uber die akute Entzundung der Arterien. Virchows Arch A Pathol Anat Histopathol 1:272–378 Virchow VR (1847) Uber die akute Entzundung der Arterien. Virchows Arch A Pathol Anat Histopathol 1:272–378
91.
go back to reference Weir B, Amidei C, Kongable G (2003) The aspect ratio (dome/neck) of ruptured and unruptured aneurysms. J Neurosurg 99:447–451PubMedCrossRef Weir B, Amidei C, Kongable G (2003) The aspect ratio (dome/neck) of ruptured and unruptured aneurysms. J Neurosurg 99:447–451PubMedCrossRef
92.
go back to reference Wermer MJ, van der Schaaf IC et al (2007) Risk of rupture of unruptured intracranial aneurysms in relation to patient and aneurysm characteristics: an updated meta-analysis. Stroke 38:1404–1410PubMedCrossRef Wermer MJ, van der Schaaf IC et al (2007) Risk of rupture of unruptured intracranial aneurysms in relation to patient and aneurysm characteristics: an updated meta-analysis. Stroke 38:1404–1410PubMedCrossRef
93.
go back to reference Wiebers DO, Whisnant JP, Huston J 3rd (2003) Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 362:103–110PubMedCrossRef Wiebers DO, Whisnant JP, Huston J 3rd (2003) Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 362:103–110PubMedCrossRef
94.
go back to reference Yasui N, Suzuki A, Nishimura H et al (1997) Long-term follow-up study of unruptured intracranial aneurysms. Neurosurgery 40:1155–1159PubMedCrossRef Yasui N, Suzuki A, Nishimura H et al (1997) Long-term follow-up study of unruptured intracranial aneurysms. Neurosurgery 40:1155–1159PubMedCrossRef
Metadata
Title
Saccular intracranial aneurysm: pathology and mechanisms
Authors
Juhana Frösen
Riikka Tulamo
Anders Paetau
Elisa Laaksamo
Miikka Korja
Aki Laakso
Mika Niemelä
Juha Hernesniemi
Publication date
01-06-2012
Publisher
Springer-Verlag
Published in
Acta Neuropathologica / Issue 6/2012
Print ISSN: 0001-6322
Electronic ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-011-0939-3

Other articles of this Issue 6/2012

Acta Neuropathologica 6/2012 Go to the issue