Skip to main content
Top
Published in: Acta Neuropathologica 6/2012

01-06-2012 | Original Paper

Gap junction pathology in multiple sclerosis lesions and normal-appearing white matter

Authors: Kyriaki Markoullis, Irene Sargiannidou, Natasa Schiza, Andreas Hadjisavvas, Federico Roncaroli, Richard Reynolds, Kleopas A. Kleopa

Published in: Acta Neuropathologica | Issue 6/2012

Login to get access

Abstract

Oligodendrocyte gap junctions (GJs) are vital for central nervous system myelination, but their involvement in multiple sclerosis (MS) pathology remains unknown. The aim of this study was to examine alterations of oligodendrocyte and related astrocyte GJs in MS lesions and normal-appearing white matter (NAWM). Post-mortem brain samples from 9 MS and 11 age-matched non-MS control patients were studied. Tissue sections that included both chronic active and inactive lesions were characterized neuropathologically with Luxol Fast Blue staining and immunostaining for myelin oligodendrocyte glycoprotein (MOG) and the microglial marker Iba1. We analyzed the expression of Cx32 and Cx47 in oligodendrocytes and of Cx43, the major astrocytic partner in oligodendrocyte–astrocyte (O/A) GJs by quantitative immunoblot and real-time PCR. Formation of GJ plaques was quantified by immunohistochemistry. Compared to control brains, both Cx32 and Cx47 GJ plaques and protein levels were reduced in and around MS lesions, while Cx43 was increased as part of astrogliosis. In the NAWM, Cx32 was significantly reduced along myelinated fibers whereas Cx47 showed increased expression mainly in oligodendrocyte precursor cells (OPCs). However, OPCs showed only limited connectivity to astrocytes. Cx43 showed modestly increased levels in MS NAWM compared to controls, while GJ plaque counts were unchanged. Our findings indicate that oligodendrocyte GJs are affected not only in chronic MS lesions but also in NAWM, where disruption of Cx32 GJs in myelinated fibers may impair myelin structure and function. Moreover, limited O/A GJ connectivity of recruited OPCs in the setting of persistent inflammation and astrogliosis may prevent differentiation and remyelination.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ahn M, Lee J, Gustafsson A, Enriquez A, Lancaster E, Sul J, Haydon P, Paul D, Huang Y, Abrams C, Scherer S (2008) Cx29 and Cx32, two connexins expressed by myelinating glia, do not interact and are functionally distinct. J Neurosci Res 86:992–1006PubMedCrossRef Ahn M, Lee J, Gustafsson A, Enriquez A, Lancaster E, Sul J, Haydon P, Paul D, Huang Y, Abrams C, Scherer S (2008) Cx29 and Cx32, two connexins expressed by myelinating glia, do not interact and are functionally distinct. J Neurosci Res 86:992–1006PubMedCrossRef
2.
go back to reference Altevogt BM, Paul DL (2004) Four classes of intercellular channels between glial cells in the CNS. J Neurosci 24:4313–4323PubMedCrossRef Altevogt BM, Paul DL (2004) Four classes of intercellular channels between glial cells in the CNS. J Neurosci 24:4313–4323PubMedCrossRef
3.
go back to reference Belliveau DJ, Kidder GM, Vaus CCG (1991) Expression of gap junction genes during postnatal neural development. Dev Genet 12:308–317PubMedCrossRef Belliveau DJ, Kidder GM, Vaus CCG (1991) Expression of gap junction genes during postnatal neural development. Dev Genet 12:308–317PubMedCrossRef
4.
go back to reference Brand-Schieber E, Werner P, Iacobas DA, Iacobas S, Beelitz M, Lowery SL, Spray DC, Scemes E (2005) Connexin43, the major gap junction protein of astrocytes, is down-regulated in inflamed white matter in an animal model of multiple sclerosis. J Neurosci Res 80:798–808PubMedCrossRef Brand-Schieber E, Werner P, Iacobas DA, Iacobas S, Beelitz M, Lowery SL, Spray DC, Scemes E (2005) Connexin43, the major gap junction protein of astrocytes, is down-regulated in inflamed white matter in an animal model of multiple sclerosis. J Neurosci Res 80:798–808PubMedCrossRef
5.
go back to reference Brück W, Porada P, Poser S, Rieckmann P, Hanefeld F, Kretzschmar HA, Lassmann H (1995) Monocyte/macrophage differentiation in early multiple sclerosis lesions. Ann Neurol 38:788–796PubMedCrossRef Brück W, Porada P, Poser S, Rieckmann P, Hanefeld F, Kretzschmar HA, Lassmann H (1995) Monocyte/macrophage differentiation in early multiple sclerosis lesions. Ann Neurol 38:788–796PubMedCrossRef
6.
go back to reference Chang A, Tourtellotte WW, Rudick R, Trapp BD (2002) Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 346:165–173PubMedCrossRef Chang A, Tourtellotte WW, Rudick R, Trapp BD (2002) Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 346:165–173PubMedCrossRef
7.
go back to reference Ciccarelli O, Werring DJ, Wheeler-Kingshott CA, Barker GJ, Parker GJ, Thompson AJ, Miller DH (2001) Investigation of MS normal-appearing brain using diffusion tensor MRI with clinical correlations. Neurology 56:926–933PubMedCrossRef Ciccarelli O, Werring DJ, Wheeler-Kingshott CA, Barker GJ, Parker GJ, Thompson AJ, Miller DH (2001) Investigation of MS normal-appearing brain using diffusion tensor MRI with clinical correlations. Neurology 56:926–933PubMedCrossRef
9.
go back to reference Filippi M, Tortorella C, Bozzali M (1999) Normal-appearing white matter changes in multiple sclerosis: the contribution of magnetic resonance techniques. Mult Scler 5:273–282PubMed Filippi M, Tortorella C, Bozzali M (1999) Normal-appearing white matter changes in multiple sclerosis: the contribution of magnetic resonance techniques. Mult Scler 5:273–282PubMed
10.
go back to reference Frischer JM, Bramow S, Dal-Bianco A, Lucchinetti CF, Rauschka H, Schmidbauer M, Laursen H, Sorensen PS, Lassmann H (2009) The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132:1175–1189PubMedCrossRef Frischer JM, Bramow S, Dal-Bianco A, Lucchinetti CF, Rauschka H, Schmidbauer M, Laursen H, Sorensen PS, Lassmann H (2009) The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132:1175–1189PubMedCrossRef
11.
go back to reference Frohman EM, Racke MK, Raine CS (2006) Multiple sclerosis—the plaque and its pathogenesis. N Engl J Med 354:942–955PubMedCrossRef Frohman EM, Racke MK, Raine CS (2006) Multiple sclerosis—the plaque and its pathogenesis. N Engl J Med 354:942–955PubMedCrossRef
12.
go back to reference Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 11:87–99PubMedCrossRef Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 11:87–99PubMedCrossRef
13.
go back to reference Hansson E, Muyderman H, Leonova J, Allansson L, Sinclair J, Blomstrand F, Thorlin T, Nilsson M, Ronnback L (2000) Astroglia and glutamate in physiology and pathology: aspects on glutamate transport, glutamate-induced cell swelling and gap-junction communication. Neurochem Int 37:317–329PubMedCrossRef Hansson E, Muyderman H, Leonova J, Allansson L, Sinclair J, Blomstrand F, Thorlin T, Nilsson M, Ronnback L (2000) Astroglia and glutamate in physiology and pathology: aspects on glutamate transport, glutamate-induced cell swelling and gap-junction communication. Neurochem Int 37:317–329PubMedCrossRef
14.
go back to reference Howell OW, Rundle JL, Garg A, Komada M, Brophy PJ, Reynolds R (2010) Activated microglia mediate axoglial disruption that contributes to axonal injury in multiple sclerosis. J Neuropathol Exp Neurol 69:1017–1033PubMedCrossRef Howell OW, Rundle JL, Garg A, Komada M, Brophy PJ, Reynolds R (2010) Activated microglia mediate axoglial disruption that contributes to axonal injury in multiple sclerosis. J Neuropathol Exp Neurol 69:1017–1033PubMedCrossRef
15.
go back to reference Kamasawa N, Sik A, Morita M, Yasumura T, Davidson K, Nagy J, Rash J (2005) Connexin-47 and connexin-32 in gap junctions of oligodendrocyte somata, myelin sheaths, paranodal loops and Schmidt-Lanterman incisures: implications for ionic homeostasis and potassium siphoning. Neuroscience 136:65–86PubMedCrossRef Kamasawa N, Sik A, Morita M, Yasumura T, Davidson K, Nagy J, Rash J (2005) Connexin-47 and connexin-32 in gap junctions of oligodendrocyte somata, myelin sheaths, paranodal loops and Schmidt-Lanterman incisures: implications for ionic homeostasis and potassium siphoning. Neuroscience 136:65–86PubMedCrossRef
16.
go back to reference Kielian T (2008) Glial connexins and gap junctions in CNS inflammation and disease. J Neurochem 106(3):1000–1016PubMedCrossRef Kielian T (2008) Glial connexins and gap junctions in CNS inflammation and disease. J Neurochem 106(3):1000–1016PubMedCrossRef
17.
go back to reference Kleopa KA, Yum SW, Scherer SS (2002) Cellular mechanisms of connexin32 mutations associated with CNS manifestations. J Neurosci Res 68:522–534PubMedCrossRef Kleopa KA, Yum SW, Scherer SS (2002) Cellular mechanisms of connexin32 mutations associated with CNS manifestations. J Neurosci Res 68:522–534PubMedCrossRef
18.
go back to reference Kleopa KA, Orthmann JL, Enriquez A, Paul DL, Scherer SS (2004) Unique distribution of gap junction proteins connexin29, connexin32, and connexin47 in oligodendrocytes. Glia 47:346–357PubMedCrossRef Kleopa KA, Orthmann JL, Enriquez A, Paul DL, Scherer SS (2004) Unique distribution of gap junction proteins connexin29, connexin32, and connexin47 in oligodendrocytes. Glia 47:346–357PubMedCrossRef
19.
go back to reference Kunze A, Congreso MR, Hartmann C, Wallraff-Beck A, Huttmann K, Bedner P, Requardt R, Seifert G, Redecker C, Willecke K, Hoffmann A, Pfeifer A, Theis M, Steinhauser C (2009) Connexin expression by radial glia-like cells is required for neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA 106:11336–11341PubMedCrossRef Kunze A, Congreso MR, Hartmann C, Wallraff-Beck A, Huttmann K, Bedner P, Requardt R, Seifert G, Redecker C, Willecke K, Hoffmann A, Pfeifer A, Theis M, Steinhauser C (2009) Connexin expression by radial glia-like cells is required for neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA 106:11336–11341PubMedCrossRef
20.
go back to reference Kutzelnigg A, Lucchinetti CF, Stadelmann C, Bruck W, Rauschka H, Bergmann M, Schmidbauer M, Parisi JE, Lassmann H (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128:2705–2712PubMedCrossRef Kutzelnigg A, Lucchinetti CF, Stadelmann C, Bruck W, Rauschka H, Bergmann M, Schmidbauer M, Parisi JE, Lassmann H (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128:2705–2712PubMedCrossRef
21.
go back to reference Lassmann H, Raine CS, Antel J, Prineas JW (1998) Immunopathology of multiple sclerosis: report on an international meeting held at the Institute of Neurology of the University of Vienna. J Neuroimmunol 86:213–217PubMedCrossRef Lassmann H, Raine CS, Antel J, Prineas JW (1998) Immunopathology of multiple sclerosis: report on an international meeting held at the Institute of Neurology of the University of Vienna. J Neuroimmunol 86:213–217PubMedCrossRef
22.
go back to reference Lucchinetti CF, Bruck W, Rodriguez M, Lassmann H (1996) Distinct patterns of multiple sclerosis pathology indicates heterogeneity on pathogenesis. Brain Pathol 6:259–274PubMedCrossRef Lucchinetti CF, Bruck W, Rodriguez M, Lassmann H (1996) Distinct patterns of multiple sclerosis pathology indicates heterogeneity on pathogenesis. Brain Pathol 6:259–274PubMedCrossRef
23.
go back to reference Lutz SE, Zhao Y, Gulinello M, Lee SC, Raine CS, Brosnan CF (2009) Deletion of astrocyte connexins 43 and 30 leads to a dysmyelinating phenotype and hippocampal CA1 vacuolation. J Neurosci 29:7743–7752PubMedCrossRef Lutz SE, Zhao Y, Gulinello M, Lee SC, Raine CS, Brosnan CF (2009) Deletion of astrocyte connexins 43 and 30 leads to a dysmyelinating phenotype and hippocampal CA1 vacuolation. J Neurosci 29:7743–7752PubMedCrossRef
24.
go back to reference Maglione M, Tress O, Haas B, Karram K, Trotter J, Willecke K, Kettenmann H (2010) Oligodendrocytes in mouse corpus callosum are coupled via gap junction channels formed by connexin47 and connexin32. Glia 58:1104–1117PubMedCrossRef Maglione M, Tress O, Haas B, Karram K, Trotter J, Willecke K, Kettenmann H (2010) Oligodendrocytes in mouse corpus callosum are coupled via gap junction channels formed by connexin47 and connexin32. Glia 58:1104–1117PubMedCrossRef
25.
go back to reference Magnotti LM, Goodenough DA, Paul DL (2011) Deletion of oligodendrocyte Cx32 and astrocyte Cx43 causes white matter vacuolation, astrocyte loss and early mortality. Glia 59:1064–1074PubMedCrossRef Magnotti LM, Goodenough DA, Paul DL (2011) Deletion of oligodendrocyte Cx32 and astrocyte Cx43 causes white matter vacuolation, astrocyte loss and early mortality. Glia 59:1064–1074PubMedCrossRef
26.
go back to reference Melanson-Drapeau L, Beyko S, Dave S, Hebb A, Franks D, Sellitto C, Paul D, Bennett S (2003) Oligodendrocyte progenitor enrichment in the connexin32 null-mutant mouse. J Neurosci 23:1759–1768PubMed Melanson-Drapeau L, Beyko S, Dave S, Hebb A, Franks D, Sellitto C, Paul D, Bennett S (2003) Oligodendrocyte progenitor enrichment in the connexin32 null-mutant mouse. J Neurosci 23:1759–1768PubMed
27.
go back to reference Menichella DM, Goodenough DA, Sirkowski E, Scherer SS, Paul DL (2003) Connexins are critical for normal myelination in the CNS. J Neurosci 23:5963–5973PubMed Menichella DM, Goodenough DA, Sirkowski E, Scherer SS, Paul DL (2003) Connexins are critical for normal myelination in the CNS. J Neurosci 23:5963–5973PubMed
28.
go back to reference Menichella DM, Majdan M, Awatramani R, Goodenough DA, Sirkowski E, Scherer SS, Paul DL (2006) Genetic and physiological evidence that oligodendrocyte gap junctions contribute to spatial buffering of potassium released during neuronal activity. J Neurosci 26(48):10984–10991PubMedCrossRef Menichella DM, Majdan M, Awatramani R, Goodenough DA, Sirkowski E, Scherer SS, Paul DL (2006) Genetic and physiological evidence that oligodendrocyte gap junctions contribute to spatial buffering of potassium released during neuronal activity. J Neurosci 26(48):10984–10991PubMedCrossRef
29.
go back to reference Nagy JI, Patel D, Ochalski PAY, Stelmack GL (1999) Connexin30 in rodent, cat and human brain: Selective expression in gray matter astrocytes, co-localization with connexin43 at gap junctions and late developmental appearance. Neuroscience 88(2):447–468PubMedCrossRef Nagy JI, Patel D, Ochalski PAY, Stelmack GL (1999) Connexin30 in rodent, cat and human brain: Selective expression in gray matter astrocytes, co-localization with connexin43 at gap junctions and late developmental appearance. Neuroscience 88(2):447–468PubMedCrossRef
30.
go back to reference Nagy JI, Rash JE (2000) Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS. Brain Res Rev 32(1):29–44PubMedCrossRef Nagy JI, Rash JE (2000) Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS. Brain Res Rev 32(1):29–44PubMedCrossRef
31.
go back to reference Nagy JI, Ionescu AV, Lynn BD, Rash JE (2003) Coupling of astrocyte connexins Cx26, Cx30, Cx43 to oligodendrocyte Cx29, Cx32, Cx47: implications from normal and connexin32 knockout mice. Glia 44:205–218PubMedCrossRef Nagy JI, Ionescu AV, Lynn BD, Rash JE (2003) Coupling of astrocyte connexins Cx26, Cx30, Cx43 to oligodendrocyte Cx29, Cx32, Cx47: implications from normal and connexin32 knockout mice. Glia 44:205–218PubMedCrossRef
32.
go back to reference Odermatt B, Wellershaus K, Wallraff A, Seifert G, Degen J, Euwens C, Fuss B, Bussow H, Schilling K, Steinhauser C, Willecke K (2003) Connexin 47 (Cx47)-deficient mice with enhanced green fluorescent protein reporter gene reveal predominant oligodendrocytic expression of Cx47 and display vacuolized myelin in the CNS. J Neurosci 23:4549–4559PubMed Odermatt B, Wellershaus K, Wallraff A, Seifert G, Degen J, Euwens C, Fuss B, Bussow H, Schilling K, Steinhauser C, Willecke K (2003) Connexin 47 (Cx47)-deficient mice with enhanced green fluorescent protein reporter gene reveal predominant oligodendrocytic expression of Cx47 and display vacuolized myelin in the CNS. J Neurosci 23:4549–4559PubMed
33.
go back to reference Orthmann-Murphy JL, Enriquez AD, Abrams CK, Scherer SS (2007) Loss-of-function connexin47 mutations cause Pelizaeus–Merzbacher-like disease. Mol Cell Neurosci 34:629–641PubMedCrossRef Orthmann-Murphy JL, Enriquez AD, Abrams CK, Scherer SS (2007) Loss-of-function connexin47 mutations cause Pelizaeus–Merzbacher-like disease. Mol Cell Neurosci 34:629–641PubMedCrossRef
34.
go back to reference Orthmann-Murphy JL, Salsano E, Abrams CK, Bizzi A, Uziel G, Freidin MM, Lamantea E, Zeviani M, Scherer SS, Pareyson D (2009) Hereditary spastic paraplegia is a novel phenotype for GJA12/GJC2 mutations. Brain 132:426–438PubMedCrossRef Orthmann-Murphy JL, Salsano E, Abrams CK, Bizzi A, Uziel G, Freidin MM, Lamantea E, Zeviani M, Scherer SS, Pareyson D (2009) Hereditary spastic paraplegia is a novel phenotype for GJA12/GJC2 mutations. Brain 132:426–438PubMedCrossRef
35.
go back to reference Paulson HL, Garbern JY, Hoban TF, Krajewski KM, Lewis RA, Fischbeck KH, Grossman RI, Lenkinski R, Kamholz JA, Shy ME (2002) Transient central nervous system white matter abnormality in X-linked Charcot–Marie–Tooth disease. Ann Neurol 52:429–434PubMedCrossRef Paulson HL, Garbern JY, Hoban TF, Krajewski KM, Lewis RA, Fischbeck KH, Grossman RI, Lenkinski R, Kamholz JA, Shy ME (2002) Transient central nervous system white matter abnormality in X-linked Charcot–Marie–Tooth disease. Ann Neurol 52:429–434PubMedCrossRef
36.
go back to reference Paznekas WA, Boyadjiev SA, Shapiro R, Daniels O, Wollnik B, Keegan CE, Innis JW, Dinulos MB, Christian C, Hannibal MC, Jabs EW (2003) Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am J Hum Genet 72:408–418PubMedCrossRef Paznekas WA, Boyadjiev SA, Shapiro R, Daniels O, Wollnik B, Keegan CE, Innis JW, Dinulos MB, Christian C, Hannibal MC, Jabs EW (2003) Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am J Hum Genet 72:408–418PubMedCrossRef
37.
go back to reference Pelletier D, Nelson SJ, Oh J, Antel JP, Kita M, Zamvil SS, Goodkin DE (2003) MRI lesion volume heterogeneity in primary progressive MS in relation with axonal damage and brain atrophy. J Neurol Neurosurg Psychiatry 74:950–952PubMedCrossRef Pelletier D, Nelson SJ, Oh J, Antel JP, Kita M, Zamvil SS, Goodkin DE (2003) MRI lesion volume heterogeneity in primary progressive MS in relation with axonal damage and brain atrophy. J Neurol Neurosurg Psychiatry 74:950–952PubMedCrossRef
38.
go back to reference Plumb J, McQuaid S, Mirakhur M, Kirk J (2002) Abnormal endothelial tight junctions in active lesions and normal-appearing white matter in multiple sclerosis. Brain Pathol 12:154–169PubMedCrossRef Plumb J, McQuaid S, Mirakhur M, Kirk J (2002) Abnormal endothelial tight junctions in active lesions and normal-appearing white matter in multiple sclerosis. Brain Pathol 12:154–169PubMedCrossRef
39.
go back to reference Prineas JW, Kwon EE, Cho ES, Sharer LR, Barnett MH, Oleszak E, Hoffman B, Morgan BP (2001) Immunopathology of secondary-progressive multiple sclerosis. Ann Neurol 50:646–657PubMedCrossRef Prineas JW, Kwon EE, Cho ES, Sharer LR, Barnett MH, Oleszak E, Hoffman B, Morgan BP (2001) Immunopathology of secondary-progressive multiple sclerosis. Ann Neurol 50:646–657PubMedCrossRef
40.
go back to reference Rash JE, Duffy HS, Dudek FE, Bilhartz BL, Whalen LR, Yasumura T (1997) Grid-mapped freeze-fracture analysis of gap junctions in gray and white matter of adult rat central nervous system, with evidence for a ‘‘panglial syncytium’’ that is not coupled to neurons. J Comp Neurol 388(2):265–292PubMedCrossRef Rash JE, Duffy HS, Dudek FE, Bilhartz BL, Whalen LR, Yasumura T (1997) Grid-mapped freeze-fracture analysis of gap junctions in gray and white matter of adult rat central nervous system, with evidence for a ‘‘panglial syncytium’’ that is not coupled to neurons. J Comp Neurol 388(2):265–292PubMedCrossRef
41.
go back to reference Rash JE, Yasumura T, Dudek FE, Nagy JI (2001) Cell-specific expression of connexins and evidence of restricted gap junctional coupling between glial cells and between neurons. J Neurosci 21(6):1983–2000PubMed Rash JE, Yasumura T, Dudek FE, Nagy JI (2001) Cell-specific expression of connexins and evidence of restricted gap junctional coupling between glial cells and between neurons. J Neurosci 21(6):1983–2000PubMed
42.
go back to reference Retamal MA, Froger N, Palacios-Prado N, Ezan P, Sáez PJ, Sáez JC, Giaume C (2007) Cx43 hemichannels and gap junction channels in astrocytes are regulated oppositely by proinflammatory cytokines released from activated microglia. J Neurosci 27:13781–13792PubMedCrossRef Retamal MA, Froger N, Palacios-Prado N, Ezan P, Sáez PJ, Sáez JC, Giaume C (2007) Cx43 hemichannels and gap junction channels in astrocytes are regulated oppositely by proinflammatory cytokines released from activated microglia. J Neurosci 27:13781–13792PubMedCrossRef
43.
go back to reference Reynolds R, Dawson M, Polito A, Cenci di Bello I, Papadopoulos D, Pham-Dinh D, Levine J (2002) The response of NG2-expressing oligodendrocyte progenitors to demyelination in MOG–EAE and MS. J Neurocytol 31:523–536PubMedCrossRef Reynolds R, Dawson M, Polito A, Cenci di Bello I, Papadopoulos D, Pham-Dinh D, Levine J (2002) The response of NG2-expressing oligodendrocyte progenitors to demyelination in MOG–EAE and MS. J Neurocytol 31:523–536PubMedCrossRef
44.
go back to reference Reynolds R, Roncaroli F, Nicholas R, Radotra B, Gveric D, Howell O (2011) The neuropathological basis of clinical progression in multiple sclerosis. Acta Neuropathol 122:155–170PubMedCrossRef Reynolds R, Roncaroli F, Nicholas R, Radotra B, Gveric D, Howell O (2011) The neuropathological basis of clinical progression in multiple sclerosis. Acta Neuropathol 122:155–170PubMedCrossRef
45.
go back to reference Roscoe WA, Messersmith E, Meyer-Franke A, Wipke B, Karlik SJ (2007) Connexin 43 gap junction proteins are up-regulated in remyelinating spinal cord. J Neurosci Res 85:945–953PubMedCrossRef Roscoe WA, Messersmith E, Meyer-Franke A, Wipke B, Karlik SJ (2007) Connexin 43 gap junction proteins are up-regulated in remyelinating spinal cord. J Neurosci Res 85:945–953PubMedCrossRef
46.
go back to reference Sargiannidou I, Ahn M, Enriquez AD, Peinado A, Reynolds R, Abrams CK, Scherer SS, Kleopa KA (2008) Human oligodendrocytes express Cx31.3: function and interactions with Cx32 mutants. Neurobiol Dis 30:221–233PubMedCrossRef Sargiannidou I, Ahn M, Enriquez AD, Peinado A, Reynolds R, Abrams CK, Scherer SS, Kleopa KA (2008) Human oligodendrocytes express Cx31.3: function and interactions with Cx32 mutants. Neurobiol Dis 30:221–233PubMedCrossRef
47.
go back to reference Sargiannidou I, Vavlitou N, Aristodemou S, Hadjisavvas A, Kyriacou K, Scherer SS, Kleopa KA (2009) Connexin32 mutations cause loss of function in Schwann cells and oligodendrocytes leading to PNS and CNS myelination defects. J Neurosci 29:4748–4761CrossRef Sargiannidou I, Vavlitou N, Aristodemou S, Hadjisavvas A, Kyriacou K, Scherer SS, Kleopa KA (2009) Connexin32 mutations cause loss of function in Schwann cells and oligodendrocytes leading to PNS and CNS myelination defects. J Neurosci 29:4748–4761CrossRef
48.
go back to reference Sharma R, Fischer MT, Bauer J, Felts PA, Smith KJ, Misu T, Fujihara K, Bradl M, Lassmann H (2010) Inflammation induced by innate immunity in the central nervous system leads to primary astrocyte dysfunction followed by demyelination. Acta Neuropathol 120:223–236PubMedCrossRef Sharma R, Fischer MT, Bauer J, Felts PA, Smith KJ, Misu T, Fujihara K, Bradl M, Lassmann H (2010) Inflammation induced by innate immunity in the central nervous system leads to primary astrocyte dysfunction followed by demyelination. Acta Neuropathol 120:223–236PubMedCrossRef
49.
go back to reference Soffer D, Raine CS (1980) Morphologic analysis of axo-glial membrane specializations in the demyelinated central nervous system. Brain Res 186:301–313PubMedCrossRef Soffer D, Raine CS (1980) Morphologic analysis of axo-glial membrane specializations in the demyelinated central nervous system. Brain Res 186:301–313PubMedCrossRef
50.
go back to reference Sutor B, Schmolke C, Teubner B, Schirmer C, Willecke K (2000) Myelination defects and neuronal hyperexcitability in the neocortex of connexin 32-deficient mice. Cereb Cortex 10(7):684–697PubMedCrossRef Sutor B, Schmolke C, Teubner B, Schirmer C, Willecke K (2000) Myelination defects and neuronal hyperexcitability in the neocortex of connexin 32-deficient mice. Cereb Cortex 10(7):684–697PubMedCrossRef
51.
go back to reference Taylor RA, Simon EM, Marks HG, Scherer SS (2003) The CNS phenotype of X-linked Charcot–Marie–Tooth disease: more than a peripheral problem. Neurology 61:1475–1478PubMedCrossRef Taylor RA, Simon EM, Marks HG, Scherer SS (2003) The CNS phenotype of X-linked Charcot–Marie–Tooth disease: more than a peripheral problem. Neurology 61:1475–1478PubMedCrossRef
52.
go back to reference Toews JC, Schram V, Weerth SH, Mignery GA, Russell JT (2007) Signaling proteins in the axoglial apparatus of sciatic nerve nodes of Ranvier. Glia 55(2):202–213PubMedCrossRef Toews JC, Schram V, Weerth SH, Mignery GA, Russell JT (2007) Signaling proteins in the axoglial apparatus of sciatic nerve nodes of Ranvier. Glia 55(2):202–213PubMedCrossRef
53.
go back to reference Tress O, Maglione M, Zlomuzica A, May D, Dicke N, Degen J, Dere E, Kettenmann H, Hartmann D, Willecke K (2011) Pathologic and phenotypic alterations in a mouse expressing a connexin47 missense mutation that causes Pelizaeus–Merzbacher-like disease in humans. PLoS Genet 7:e1002146 (Epub 1002011 Jul 1002147) Tress O, Maglione M, Zlomuzica A, May D, Dicke N, Degen J, Dere E, Kettenmann H, Hartmann D, Willecke K (2011) Pathologic and phenotypic alterations in a mouse expressing a connexin47 missense mutation that causes Pelizaeus–Merzbacher-like disease in humans. PLoS Genet 7:e1002146 (Epub 1002011 Jul 1002147)
54.
go back to reference Uhlenberg B, Schuelke M, Ruschendorf F, Ruf N, Kaindl AM, Henneke M, Thiele H, Stoltenburg-Didinger G, Aksu F, Topaloglu H, Nurnberg P, Hubner C, Weschke B, Gartner J (2004) Mutations in the gene encoding gap junction protein alpha 12 (Connexin 46.6) cause Pelizaeus–Merzbacher-like disease. Am J Hum Genet 75:251–260PubMedCrossRef Uhlenberg B, Schuelke M, Ruschendorf F, Ruf N, Kaindl AM, Henneke M, Thiele H, Stoltenburg-Didinger G, Aksu F, Topaloglu H, Nurnberg P, Hubner C, Weschke B, Gartner J (2004) Mutations in the gene encoding gap junction protein alpha 12 (Connexin 46.6) cause Pelizaeus–Merzbacher-like disease. Am J Hum Genet 75:251–260PubMedCrossRef
55.
go back to reference Vavlitou N, Sargiannidou I, Markoullis K, Kyriacou K, Scherer SS, Kleopa KA (2010) Axonal pathology precedes demyelination in a mouse model of X-linked demyelinating/type I Charcot-Marie Tooth neuropathy. J Neuropathol Exp Neurol 69:945–958PubMedCrossRef Vavlitou N, Sargiannidou I, Markoullis K, Kyriacou K, Scherer SS, Kleopa KA (2010) Axonal pathology precedes demyelination in a mouse model of X-linked demyelinating/type I Charcot-Marie Tooth neuropathy. J Neuropathol Exp Neurol 69:945–958PubMedCrossRef
56.
go back to reference Véga C, Martiel JL, Drouhault D, Burckhart MF, Coles JA (2003) Uptake of locally applied deoxyglucose, glucose and lactate by axons and Schwann cells of rat vagus nerve. J Physiol 546:551–564PubMedCrossRef Véga C, Martiel JL, Drouhault D, Burckhart MF, Coles JA (2003) Uptake of locally applied deoxyglucose, glucose and lactate by axons and Schwann cells of rat vagus nerve. J Physiol 546:551–564PubMedCrossRef
57.
go back to reference Venance L, Cordier J, Monge M, Zalc B, Glowinski J, Giame C (1995) Homotypic and heterotypic coupling mediated by gap junctions during glial cell differentiation in vitro. Eur J Neurosci 7:451–461PubMedCrossRef Venance L, Cordier J, Monge M, Zalc B, Glowinski J, Giame C (1995) Homotypic and heterotypic coupling mediated by gap junctions during glial cell differentiation in vitro. Eur J Neurosci 7:451–461PubMedCrossRef
58.
go back to reference Von Blankenfeld G, Ransom BR, Kettenmann H (1993) Development of cell–cell coupling among cells of the oligodendrocyte lineage. Glia 7:322–328CrossRef Von Blankenfeld G, Ransom BR, Kettenmann H (1993) Development of cell–cell coupling among cells of the oligodendrocyte lineage. Glia 7:322–328CrossRef
59.
go back to reference Weiner HL (2009) The Challenge of Multiple Sclerosis: How Do We Cure A Chronic Heterogeneous Disease? Ann Neurol 65:239–248PubMedCrossRef Weiner HL (2009) The Challenge of Multiple Sclerosis: How Do We Cure A Chronic Heterogeneous Disease? Ann Neurol 65:239–248PubMedCrossRef
60.
go back to reference Wolswijk G (1998) Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J Neurosci 18(2):601–609PubMed Wolswijk G (1998) Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J Neurosci 18(2):601–609PubMed
61.
go back to reference Zamvil SS, Steinman L (2003) Diverse targets for intervention during inflammatory and neurodegenerative phases of multiple sclerosis. Neuron 38:685–688PubMedCrossRef Zamvil SS, Steinman L (2003) Diverse targets for intervention during inflammatory and neurodegenerative phases of multiple sclerosis. Neuron 38:685–688PubMedCrossRef
Metadata
Title
Gap junction pathology in multiple sclerosis lesions and normal-appearing white matter
Authors
Kyriaki Markoullis
Irene Sargiannidou
Natasa Schiza
Andreas Hadjisavvas
Federico Roncaroli
Richard Reynolds
Kleopas A. Kleopa
Publication date
01-06-2012
Publisher
Springer-Verlag
Published in
Acta Neuropathologica / Issue 6/2012
Print ISSN: 0001-6322
Electronic ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-012-0978-4

Other articles of this Issue 6/2012

Acta Neuropathologica 6/2012 Go to the issue