Skip to main content
Top
Published in: Acta Neuropathologica 2/2008

01-02-2008 | Original Paper

Aggregation of α-synuclein by DOPAL, the monoamine oxidase metabolite of dopamine

Authors: William J. Burke, Vijaya B. Kumar, Neeraj Pandey, W. Michael Panneton, Qi Gan, Mark W. Franko, Mark O’Dell, Shu Wen Li, Yi Pan, Hyung D. Chung, James E. Galvin

Published in: Acta Neuropathologica | Issue 2/2008

Login to get access

Abstract

Parkinson’s disease (PD) is a neurodegenerative disease characterized by the selective loss of dopamine (DA) neurons and the presence of α-synuclein (AS) aggregates as Lewy bodies (LBs) in the remaining substantia nigra (SN) neurons. A continuing puzzle in studying PD pathogenesis is that although AS is expressed throughout the brain, LBs and selective dopaminergic cell loss lead to characteristic clinical signs of PD, suggesting that there is a link between AS aggregation and DA metabolism. One potential candidate for this link is the monoamine oxidase (MAO) metabolite of DA, 3,4-dihydroxyphenylacetaldehyde (DOPAL), as neither DA nor DA metabolites other than DOPAL are toxic to SN neurons at physiological concentrations. We tested DOPAL-induced AS aggregation in a cell-free system, in vitro in DA neuron cultures and in vivo with stereotactic injections into the SN of Sprague–Dawley rats by Western blots, fluorescent confocal microscopy and immunohistochemistry. We demonstrate that DOPAL in physiologically relevant concentrations, triggers AS aggregation in the cell-free system, and in cell cultures resulting in the formation of potentially toxic AS oligomers and aggregates. Furthermore, DOPAL injection into the SN of Sprague–Dawley rats resulted in DA neuron loss and the accumulation of high molecular weight oligomers of AS detected by Western blot. Our findings support the hypothesis that DA metabolism via DOPAL can cause both DA neuron loss and AS aggregation observed in PD.
Literature
1.
go back to reference Arasate M, Mitra S, Schweitzer ES, Segal MR (2004) Inclusion body formation reduces levels of mutant huntingtin and risk of neuronal death. Nature 431:805–810CrossRef Arasate M, Mitra S, Schweitzer ES, Segal MR (2004) Inclusion body formation reduces levels of mutant huntingtin and risk of neuronal death. Nature 431:805–810CrossRef
2.
go back to reference Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces feature of Parkinson’s disease. Nature Neurosci 3:1301–1306PubMedCrossRef Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces feature of Parkinson’s disease. Nature Neurosci 3:1301–1306PubMedCrossRef
3.
go back to reference Blashko H (1952) Amine oxidase and amine metabolism. Pharmacol Rev 4:415–453 Blashko H (1952) Amine oxidase and amine metabolism. Pharmacol Rev 4:415–453
4.
go back to reference Burke WJ (2003) 3,4-Dihydroxyphenylacetaldehyde: a potential target for neuroprotective therapy in Parkinson’s disease. Current Drug Targets. CNS Neurol Disord 2:143–148CrossRef Burke WJ (2003) 3,4-Dihydroxyphenylacetaldehyde: a potential target for neuroprotective therapy in Parkinson’s disease. Current Drug Targets. CNS Neurol Disord 2:143–148CrossRef
5.
go back to reference Burke WJ, Li SW, Anwar M, Glickstein SB, Ruggiero DA (2001) Catecholamine-derived aldehyde induces apoptosis in adrenergic neurons in rostral ventral lateral medulla. Brain Res 891:218–227PubMedCrossRef Burke WJ, Li SW, Anwar M, Glickstein SB, Ruggiero DA (2001) Catecholamine-derived aldehyde induces apoptosis in adrenergic neurons in rostral ventral lateral medulla. Brain Res 891:218–227PubMedCrossRef
6.
go back to reference Burke WJ, Li SW, Chung HD, Ruggiero DA, Kristal BS, Johnson EM, Lampe P, Kumar VB, Franko M, Zahm DS (2004) Neurotoxicity of MAO metabolites of catecholamine neurotransmitters: role in neurodegenerative diseases. Neurotoxicology 25:101–115PubMedCrossRef Burke WJ, Li SW, Chung HD, Ruggiero DA, Kristal BS, Johnson EM, Lampe P, Kumar VB, Franko M, Zahm DS (2004) Neurotoxicity of MAO metabolites of catecholamine neurotransmitters: role in neurodegenerative diseases. Neurotoxicology 25:101–115PubMedCrossRef
7.
go back to reference Burke WJ, Li SW, Williams EA, Nonneman R, Zahm DS (2003) Dihydroxyphenylacetaldehyde is the toxic dopamine metabolite in vivo: implications for Parkinson’s disease pathogenesis. Brain Res 989:205–213PubMedCrossRef Burke WJ, Li SW, Williams EA, Nonneman R, Zahm DS (2003) Dihydroxyphenylacetaldehyde is the toxic dopamine metabolite in vivo: implications for Parkinson’s disease pathogenesis. Brain Res 989:205–213PubMedCrossRef
8.
go back to reference Burke WJ, Schmitt CA, Gillespie KN, Li SW (1996) 3,4-Dihydroxyphenylglycolaldehyde, the MAO-A metabolite of norepinephrine, is selectively toxic to differentiated rat pheochromocytoma cells. Brain Res 772:232–235CrossRef Burke WJ, Schmitt CA, Gillespie KN, Li SW (1996) 3,4-Dihydroxyphenylglycolaldehyde, the MAO-A metabolite of norepinephrine, is selectively toxic to differentiated rat pheochromocytoma cells. Brain Res 772:232–235CrossRef
9.
go back to reference Cappai R, leck S-L, Tew DJ, Williamson NA, Smith DP, Galatis D, Sharples RA, Curtain CC, Ali FE, Cherney RA, Culvenor JG, Bottomley SP, Masters CL, Barnham KJ, Hill AF (2005) Dopamine promotes α-synuclein aggregation into SDS-resistant soluble oligomers via a distinct folding pathway. FASEB J 19: 1377–1396PubMed Cappai R, leck S-L, Tew DJ, Williamson NA, Smith DP, Galatis D, Sharples RA, Curtain CC, Ali FE, Cherney RA, Culvenor JG, Bottomley SP, Masters CL, Barnham KJ, Hill AF (2005) Dopamine promotes α-synuclein aggregation into SDS-resistant soluble oligomers via a distinct folding pathway. FASEB J 19: 1377–1396PubMed
10.
go back to reference Coleman P, Federoff H, Kurlan R (2004) A focus on the synapse for neuroprotection in Alzheimer’s disease and other dementias. Neurology 63:1155–1162PubMed Coleman P, Federoff H, Kurlan R (2004) A focus on the synapse for neuroprotection in Alzheimer’s disease and other dementias. Neurology 63:1155–1162PubMed
11.
go back to reference Conway KA, Rochet JC, Bieganski RM, Lansbury PT (2001) Kinetic stabilization of the α-synuclein protofibril by a dopamine α-synuclein adduct. Science 292:1346–1349CrossRef Conway KA, Rochet JC, Bieganski RM, Lansbury PT (2001) Kinetic stabilization of the α-synuclein protofibril by a dopamine α-synuclein adduct. Science 292:1346–1349CrossRef
12.
go back to reference Dawson TM, Dawson VL (2003) Molecular pathways of degeneration in Parkinson’s disease. Science 302:819–821PubMedCrossRef Dawson TM, Dawson VL (2003) Molecular pathways of degeneration in Parkinson’s disease. Science 302:819–821PubMedCrossRef
13.
14.
go back to reference Filloux F, Townsend JJ (1993) Pre- and postsynaptic neurotoxic effects demonstrated by intrastriatal injection. Exp Neurol 119:79–88PubMedCrossRef Filloux F, Townsend JJ (1993) Pre- and postsynaptic neurotoxic effects demonstrated by intrastriatal injection. Exp Neurol 119:79–88PubMedCrossRef
15.
go back to reference Galvin JE (2006) Interaction of alpha-synuclein and dopamine metabolites in pathogenesis of Parkinson’s disease: a case for selective vulnerability of substantia nigra. Acta Neuropathol 112:115–126PubMedCrossRef Galvin JE (2006) Interaction of alpha-synuclein and dopamine metabolites in pathogenesis of Parkinson’s disease: a case for selective vulnerability of substantia nigra. Acta Neuropathol 112:115–126PubMedCrossRef
16.
go back to reference Galvin JE, Lee VM, Trojanowski JD (2001) Synucleinopathies: clinical and pathological implications. Arch Neurol 58:186–190PubMedCrossRef Galvin JE, Lee VM, Trojanowski JD (2001) Synucleinopathies: clinical and pathological implications. Arch Neurol 58:186–190PubMedCrossRef
17.
go back to reference Gong Y, Chang L, Viola KL, Lacor PN, Lambert MP, Finch FE, Krafft GA, Klein WL (2003) Alzheimer’s disease-affected brain: presence of oligomeric AB ligands (ADDLS) suggest a molecular basis for reversible memory loss. Proc Natl Acad Sci USA 100:10417–10422PubMedCrossRef Gong Y, Chang L, Viola KL, Lacor PN, Lambert MP, Finch FE, Krafft GA, Klein WL (2003) Alzheimer’s disease-affected brain: presence of oligomeric AB ligands (ADDLS) suggest a molecular basis for reversible memory loss. Proc Natl Acad Sci USA 100:10417–10422PubMedCrossRef
18.
go back to reference Greenamyre JT, Hastings TG (2004) Parkinson’s—divergent causes, convergent mechanisms. Science 304:1120–1122PubMedCrossRef Greenamyre JT, Hastings TG (2004) Parkinson’s—divergent causes, convergent mechanisms. Science 304:1120–1122PubMedCrossRef
19.
go back to reference Hashimoto M, Hsu LJ, Sisk A, Xia Y, Taked A, Sundmo M, Masliah E (1998) Human recombinant NACP/α-synuclein is aggregated and fibrillated in vitro: relevance for Lewy body disease. Brain Res 99:301–306CrossRef Hashimoto M, Hsu LJ, Sisk A, Xia Y, Taked A, Sundmo M, Masliah E (1998) Human recombinant NACP/α-synuclein is aggregated and fibrillated in vitro: relevance for Lewy body disease. Brain Res 99:301–306CrossRef
20.
go back to reference Hirsch EC, Faucheux B, Damier P, Mouatt-Prigent A, Agid Y (1997) Neuronal vulnerability in Parkinson’s disease. J Neural Transm 50:79–88 Hirsch EC, Faucheux B, Damier P, Mouatt-Prigent A, Agid Y (1997) Neuronal vulnerability in Parkinson’s disease. J Neural Transm 50:79–88
21.
go back to reference Hornykiewicz O (1996) Dopamine (3-hydroxytyramine) and brain function. Pharmacol Rev 18:925–965 Hornykiewicz O (1996) Dopamine (3-hydroxytyramine) and brain function. Pharmacol Rev 18:925–965
22.
go back to reference Jellinger K (1987) Overview of morphological changes in Parkinson’s disease. J Adv Neurol 45:1–18 Jellinger K (1987) Overview of morphological changes in Parkinson’s disease. J Adv Neurol 45:1–18
23.
go back to reference Kristal BS, Conway AD, Brown AM, Jain JC, Ulluci PA, Li SW, Burke WJ (2000) Selective dopaminergic vulnerability: 3,4-dihydroxyphenylacetaldehyde targets mitochondria. Free Radic Bio Med 30:24–931 Kristal BS, Conway AD, Brown AM, Jain JC, Ulluci PA, Li SW, Burke WJ (2000) Selective dopaminergic vulnerability: 3,4-dihydroxyphenylacetaldehyde targets mitochondria. Free Radic Bio Med 30:24–931
24.
go back to reference Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nature Genet 18:106–108PubMedCrossRef Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nature Genet 18:106–108PubMedCrossRef
25.
go back to reference Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola K (1998) Diffusible, nonfibrillar ligands derived from AB 1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448–6453PubMedCrossRef Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola K (1998) Diffusible, nonfibrillar ligands derived from AB 1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448–6453PubMedCrossRef
26.
go back to reference Lamensdorf I, Eisenhofer G, Harvery-White J, Nechustan A, Kirk K, Kopin IJ (2000) Dihydroxyphenylacetaldehyde potentiates the toxic effects of metabolic stress in PC 12 cells. Brain Res 868:191PubMedCrossRef Lamensdorf I, Eisenhofer G, Harvery-White J, Nechustan A, Kirk K, Kopin IJ (2000) Dihydroxyphenylacetaldehyde potentiates the toxic effects of metabolic stress in PC 12 cells. Brain Res 868:191PubMedCrossRef
27.
go back to reference Lee FJS, Liu F, Pristupa ZB, Niznik HB (2001) Direct binding and functional coupling of α-synuclein to dopamine transporters accelerate dopamine-induced apoptosis. FASEB J 15:916–926PubMedCrossRef Lee FJS, Liu F, Pristupa ZB, Niznik HB (2001) Direct binding and functional coupling of α-synuclein to dopamine transporters accelerate dopamine-induced apoptosis. FASEB J 15:916–926PubMedCrossRef
28.
go back to reference Li HT, Lin DH, Luo XY, Zhang F, Ji LN, Du HN, Hi J, Zhou JW, Hu HY (2005) Inhibition of α-synuclein fibrillation by dopamine analogs via reaction with amino groups of α-synuclein: Implication for dopaminergic neurodegeneration. FEBS J 272:3661–3672PubMedCrossRef Li HT, Lin DH, Luo XY, Zhang F, Ji LN, Du HN, Hi J, Zhou JW, Hu HY (2005) Inhibition of α-synuclein fibrillation by dopamine analogs via reaction with amino groups of α-synuclein: Implication for dopaminergic neurodegeneration. FEBS J 272:3661–3672PubMedCrossRef
29.
go back to reference Li SW, Burke WJ (1998) Synthesis of a biochemically important aldehyde, 3,4-dihydroxyphenylacetaldehyde. Bioorg Chem 26:45–50CrossRef Li SW, Burke WJ (1998) Synthesis of a biochemically important aldehyde, 3,4-dihydroxyphenylacetaldehyde. Bioorg Chem 26:45–50CrossRef
30.
go back to reference Li SW, Li HT, Minteer S, Burke WJ (2001) 3,4-Dihydroxyphenylacetaldehyde and hydrogen peroxide generate a hydroxyl radical: possible role in Parkinson’s disease pathogenesis. Brain Res 93:1–7CrossRef Li SW, Li HT, Minteer S, Burke WJ (2001) 3,4-Dihydroxyphenylacetaldehyde and hydrogen peroxide generate a hydroxyl radical: possible role in Parkinson’s disease pathogenesis. Brain Res 93:1–7CrossRef
31.
go back to reference Mandel S, Grunblatt E, Riederer P, Amariglio N, Hirsch JJ, Rechari G, Youdim MBH (2007) Gene expression profiling of sporadic Parkinson’s disease substantia nigra pars compacta reveals impairment of ubiquitin proteosome subunits, SKP1A, aldehyde dehydrogenase, and chaperone HSC-70. Ann NY Acad Sci 1053:356–375CrossRef Mandel S, Grunblatt E, Riederer P, Amariglio N, Hirsch JJ, Rechari G, Youdim MBH (2007) Gene expression profiling of sporadic Parkinson’s disease substantia nigra pars compacta reveals impairment of ubiquitin proteosome subunits, SKP1A, aldehyde dehydrogenase, and chaperone HSC-70. Ann NY Acad Sci 1053:356–375CrossRef
32.
go back to reference Mazzulli JR, Mishizen AJ, Giasson BJ, Lynch DR, Thomas SA, Nakashima A, Nagatsu T, Ota A, Ischiropoulos H (2006) Cytosolic catechols inhibit α-synuclein aggregation and facilitate the formation of intracellular soluble oligomeric intermediates. J Neurosci 26:10068–10078PubMedCrossRef Mazzulli JR, Mishizen AJ, Giasson BJ, Lynch DR, Thomas SA, Nakashima A, Nagatsu T, Ota A, Ischiropoulos H (2006) Cytosolic catechols inhibit α-synuclein aggregation and facilitate the formation of intracellular soluble oligomeric intermediates. J Neurosci 26:10068–10078PubMedCrossRef
33.
go back to reference Miller DW, Hague SM, Clairmon J, Baptista M, Gwinn-Hardy K, Cokson MR, Singleton AB (2004) Alpha-synuclein in blood and brain from familial Parkinson disease with SNCA locus triplication. Neurology 62:1835–1838PubMed Miller DW, Hague SM, Clairmon J, Baptista M, Gwinn-Hardy K, Cokson MR, Singleton AB (2004) Alpha-synuclein in blood and brain from familial Parkinson disease with SNCA locus triplication. Neurology 62:1835–1838PubMed
34.
go back to reference Nagatsu T, Sawada M (2006) Cellular and molecular mechanisms of Parkinson’s disease: neurotoxins, causative genes and inflamatory cytokines. Cell Mol Neurobiol 26:779–800CrossRef Nagatsu T, Sawada M (2006) Cellular and molecular mechanisms of Parkinson’s disease: neurotoxins, causative genes and inflamatory cytokines. Cell Mol Neurobiol 26:779–800CrossRef
35.
go back to reference Narhi L (1999) Both familial Parkinson’s disease mutations accelerate α-synuclein aggregation. J Biol Chem 274:9843–9846PubMedCrossRef Narhi L (1999) Both familial Parkinson’s disease mutations accelerate α-synuclein aggregation. J Biol Chem 274:9843–9846PubMedCrossRef
36.
go back to reference Norris EH, Giasson BI, Hodara R, Xu S, Trojanowski JQ, Ischiropoulos H, Lee VM (2005) Reversible inhibition of α-synuclein fibrillizationation by dopaminochrome-mediated conformational alterations. J Biol Chem 280:21212–21219PubMedCrossRef Norris EH, Giasson BI, Hodara R, Xu S, Trojanowski JQ, Ischiropoulos H, Lee VM (2005) Reversible inhibition of α-synuclein fibrillizationation by dopaminochrome-mediated conformational alterations. J Biol Chem 280:21212–21219PubMedCrossRef
37.
go back to reference Osterova-Golts N, Petrucelli L, Hardy J, Lee JM, Farer M, Wolozin B (2000) The A53T α-synuclein mutation increases iron-dependent aggregation and toxicity. J Neurosci 20:6048–6054 Osterova-Golts N, Petrucelli L, Hardy J, Lee JM, Farer M, Wolozin B (2000) The A53T α-synuclein mutation increases iron-dependent aggregation and toxicity. J Neurosci 20:6048–6054
38.
go back to reference Paik SR, Shin HJ, Lee JH (2000) Metal catalyzes oxidation of α-synuclein in the presence of copper (II) and hydrogen peroxide. Arch Biochem Biophys 378:269–277PubMedCrossRef Paik SR, Shin HJ, Lee JH (2000) Metal catalyzes oxidation of α-synuclein in the presence of copper (II) and hydrogen peroxide. Arch Biochem Biophys 378:269–277PubMedCrossRef
39.
go back to reference Pandey N, Schmidt RE, Galvin JE (2006) Mutations of KTKEGV repeat region of alpha-synuclein promotes aggregation in cultured cells. Expl Neurol 187:1515–1520 Pandey N, Schmidt RE, Galvin JE (2006) Mutations of KTKEGV repeat region of alpha-synuclein promotes aggregation in cultured cells. Expl Neurol 187:1515–1520
40.
go back to reference Parkinson J (1817) An Essay on Shaking Palsy Parkinson J (1817) An Essay on Shaking Palsy
41.
go back to reference Polymeropoulos MD, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Stenroos ES, Chandraskharappa s, Athanassiadou H, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Dilorio G, Golbe LI, Nussbaum RL (1997) Mutation in α-synuclein gene identified in families with Parkinson’s disease. Science 275:2045–2047CrossRef Polymeropoulos MD, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Stenroos ES, Chandraskharappa s, Athanassiadou H, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Dilorio G, Golbe LI, Nussbaum RL (1997) Mutation in α-synuclein gene identified in families with Parkinson’s disease. Science 275:2045–2047CrossRef
42.
go back to reference Sawada H, Khono R, Kihara T, Izumi Y, Sakka N, Ibi M, Nakanishi M, Nakamizo T, Yamakawa K, Shibasaki H (2004) Proteasome mediates dopaminergic neuronal degeneragion and its inhibition causes alpha-synuclein inclusions. J Biol Chem 279:10710–10719PubMedCrossRef Sawada H, Khono R, Kihara T, Izumi Y, Sakka N, Ibi M, Nakanishi M, Nakamizo T, Yamakawa K, Shibasaki H (2004) Proteasome mediates dopaminergic neuronal degeneragion and its inhibition causes alpha-synuclein inclusions. J Biol Chem 279:10710–10719PubMedCrossRef
43.
go back to reference Schapira AHV, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54:823–827PubMedCrossRef Schapira AHV, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54:823–827PubMedCrossRef
44.
go back to reference Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goerdert M (1997) α-Synuclein in Lewy bodies. Nature 388:839–840PubMedCrossRef Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goerdert M (1997) α-Synuclein in Lewy bodies. Nature 388:839–840PubMedCrossRef
45.
go back to reference Swerdlow RH, Parks JK, Davis JN, Cassarino BS, Trimmer PA, Currie LJ, Dougherty S, Bridges WS, Bennet JP, Wooten GF, Parker DW (2004) Matrilineal inheritance of complex I dysfunction in a multigenerational Parkinson’s disease family. Ann Neurol 44:873–881CrossRef Swerdlow RH, Parks JK, Davis JN, Cassarino BS, Trimmer PA, Currie LJ, Dougherty S, Bridges WS, Bennet JP, Wooten GF, Parker DW (2004) Matrilineal inheritance of complex I dysfunction in a multigenerational Parkinson’s disease family. Ann Neurol 44:873–881CrossRef
46.
go back to reference Volles MJ, Lansbury PT (2002) Vesicle permeabilization by protofibrillar α-synuclein: comparison of wild type with Parkinson’s disease-linked mutants and insights in the mechanism. Biochemistry 41:4595–4602PubMedCrossRef Volles MJ, Lansbury PT (2002) Vesicle permeabilization by protofibrillar α-synuclein: comparison of wild type with Parkinson’s disease-linked mutants and insights in the mechanism. Biochemistry 41:4595–4602PubMedCrossRef
47.
go back to reference Volles MJ, Lee SJ, Rochet JC, Schtelerman MD, Ding JT, Kessler JC, Lansbury PT (2001) Vesicle permeabilization by protofibrillar α-synuclein: implications for the pathogenesis and treatment of Parkinson’s disease. Biochemistry 40:7812–7819PubMedCrossRef Volles MJ, Lee SJ, Rochet JC, Schtelerman MD, Ding JT, Kessler JC, Lansbury PT (2001) Vesicle permeabilization by protofibrillar α-synuclein: implications for the pathogenesis and treatment of Parkinson’s disease. Biochemistry 40:7812–7819PubMedCrossRef
48.
go back to reference Xu J, Kao SY, Song W, Jin LW, Yankner BA (2002) Dopamine-dependent neurotoxicity of α-synuclein: a mechanism for selective neurodegeneration in Parkinson’s disease. Nat Med 8:600–606PubMedCrossRef Xu J, Kao SY, Song W, Jin LW, Yankner BA (2002) Dopamine-dependent neurotoxicity of α-synuclein: a mechanism for selective neurodegeneration in Parkinson’s disease. Nat Med 8:600–606PubMedCrossRef
49.
go back to reference Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros RB, Ampuero I, Vidal L, Hoeniaka J, Rodríguez O, Atares B (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164–173PubMedCrossRef Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros RB, Ampuero I, Vidal L, Hoeniaka J, Rodríguez O, Atares B (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164–173PubMedCrossRef
Metadata
Title
Aggregation of α-synuclein by DOPAL, the monoamine oxidase metabolite of dopamine
Authors
William J. Burke
Vijaya B. Kumar
Neeraj Pandey
W. Michael Panneton
Qi Gan
Mark W. Franko
Mark O’Dell
Shu Wen Li
Yi Pan
Hyung D. Chung
James E. Galvin
Publication date
01-02-2008
Publisher
Springer-Verlag
Published in
Acta Neuropathologica / Issue 2/2008
Print ISSN: 0001-6322
Electronic ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-007-0303-9

Other articles of this Issue 2/2008

Acta Neuropathologica 2/2008 Go to the issue