Skip to main content
Top
Published in: Basic Research in Cardiology 1/2017

01-01-2017 | Original Contribution

Calpain 1 cleaves and inactivates prostacyclin synthase in mesenteric arteries from diabetic mice

Authors: Voahanginirina Randriamboavonjy, Anastasia Kyselova, Amro Elgheznawy, Sven Zukunft, Ilka Wittig, Ingrid Fleming

Published in: Basic Research in Cardiology | Issue 1/2017

Login to get access

Abstract

Diabetes is associated with a number of co-morbidities including an increased risk of developing cardiovascular diseases. The activation of Ca2+-activated proteases of the calpain family has been implicated in platelet activation associated with diabetes and this study aimed to determine the role of calpain activation in the development of endothelial dysfunction. Diabetes induction in mice attenuated acetylcholine-induced relaxation of mesenteric artery rings, an effect prevented in mice receiving a calpain inhibitor. A nitric oxide-independent but diclofenac-sensitive component of the relaxation–response was altered and correlated with a loss of prostacyclin (PGI2) generation and reduced vascular levels of PGI2 synthase. Calpain inhibition was also able to restore PGI2 synthase levels and PGI2 generation in arteries from diabetic animals. The effects of diabetes were reproduced in vitro by a combination of high glucose and palmitate, which elicited calpain activation, PGI2 synthase cleavage and inactivation as well as endothelial dysfunction in mesenteric arteries from wild-type mice. PGI2 cleavage was not observed in arteries from calpain 1−/− mice or mice overexpressing the endogenous calpain inhibitor calpastatin. Finally, proteomic analyses revealed that calpain 1 cleaved the C-terminal domain of PGI2 synthase close to the catalytic site of the enzyme. These data demonstrate that diabetes leads to the activation of calpain 1 in mesenteric arteries and can initiate endothelial dysfunction by cleaving and inactivating the PGI2 synthase. Given that calpain inhibition prevented diabetes-induced endothelial dysfunction in mesenteric arteries, calpains represent an interesting therapeutic target for the prevention of cardiovascular complication of diabetes.
Appendix
Available only for authorised users
Literature
1.
go back to reference Adeagbo AS, Malik KU (1990) Mechanism of vascular actions of prostacyclin in the rat isolated perfused mesenteric arteries. J Pharmacol Exp Ther 252:26–34PubMed Adeagbo AS, Malik KU (1990) Mechanism of vascular actions of prostacyclin in the rat isolated perfused mesenteric arteries. J Pharmacol Exp Ther 252:26–34PubMed
3.
4.
go back to reference Bunting S, Gryglewski R, Moncada S, Vane JR (1976) Arterial walls generate from prostaglandin endoperoxides a substance (prostaglandin X) which relaxes strips of mesenteric and coeliac arteries and inhibits platelet aggregation. Prostaglandins 12:897–913CrossRefPubMed Bunting S, Gryglewski R, Moncada S, Vane JR (1976) Arterial walls generate from prostaglandin endoperoxides a substance (prostaglandin X) which relaxes strips of mesenteric and coeliac arteries and inhibits platelet aggregation. Prostaglandins 12:897–913CrossRefPubMed
5.
go back to reference Cheng Z, Jiang X, Pansuria M, Fang P, Mai J, Mallilankaraman K, Gandhirajan RK, Eguchi S, Scalia R, Madesh M, Yang X, Wang H (2015) Hyperhomocysteinemia and hyperglycemia induce and potentiate endothelial dysfunction via mu-calpain activation. Diabetes 64:947–959. doi:10.2337/db14-0784 CrossRefPubMed Cheng Z, Jiang X, Pansuria M, Fang P, Mai J, Mallilankaraman K, Gandhirajan RK, Eguchi S, Scalia R, Madesh M, Yang X, Wang H (2015) Hyperhomocysteinemia and hyperglycemia induce and potentiate endothelial dysfunction via mu-calpain activation. Diabetes 64:947–959. doi:10.​2337/​db14-0784 CrossRefPubMed
7.
8.
go back to reference Duong Van Huyen JP, Vessieres E, Perret C, Troise A, Prince S, Guihot AL, Barbry P, Henrion D, Bruneval P, Laurent S, Lelievre-Pegorier M, Fassot C (2010) In utero exposure to maternal diabetes impairs vascular expression of prostacyclin receptor in rat offspring. Diabetes 59:2597–2602. doi:10.2337/db10-0311 CrossRefPubMed Duong Van Huyen JP, Vessieres E, Perret C, Troise A, Prince S, Guihot AL, Barbry P, Henrion D, Bruneval P, Laurent S, Lelievre-Pegorier M, Fassot C (2010) In utero exposure to maternal diabetes impairs vascular expression of prostacyclin receptor in rat offspring. Diabetes 59:2597–2602. doi:10.​2337/​db10-0311 CrossRefPubMed
11.
12.
go back to reference Fleming I, Fisslthaler B, Dixit M, Busse R (2005) Role of PECAM-1 in the shear-stress-induced activation of Akt and the endothelial nitric oxide synthase (eNOS) in endothelial cells. J Cell Sci 118:4103–4111. doi:10.1242/jcs.02541 CrossRefPubMed Fleming I, Fisslthaler B, Dixit M, Busse R (2005) Role of PECAM-1 in the shear-stress-induced activation of Akt and the endothelial nitric oxide synthase (eNOS) in endothelial cells. J Cell Sci 118:4103–4111. doi:10.​1242/​jcs.​02541 CrossRefPubMed
17.
go back to reference Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, Aoki T, Etoh T, Hashimoto T, Naruse M, Sano H, Utsumi H, Nawata H (2000) High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C—dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49:1939–1945. doi:10.2337/diabetes.49.11.1939 CrossRefPubMed Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, Aoki T, Etoh T, Hashimoto T, Naruse M, Sano H, Utsumi H, Nawata H (2000) High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C—dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49:1939–1945. doi:10.​2337/​diabetes.​49.​11.​1939 CrossRefPubMed
18.
go back to reference Lagaud GJ, Randriamboavonjy V, Roul G, Stoclet JC, Andriantsitohaina R (1999) Mechanism of Ca2+ release and entry during contraction elicited by norepinephrine in rat resistance arteries. Am J Physiol 276:H300–H308PubMed Lagaud GJ, Randriamboavonjy V, Roul G, Stoclet JC, Andriantsitohaina R (1999) Mechanism of Ca2+ release and entry during contraction elicited by norepinephrine in rat resistance arteries. Am J Physiol 276:H300–H308PubMed
19.
go back to reference Letavernier E, Zafrani L, Perez J, Letavernier B, Haymann JP, Baud L (2012) The role of calpains in myocardial remodelling and heart failure. Cardiovasc Res. doi:10.1093/cvr/cvs099 PubMed Letavernier E, Zafrani L, Perez J, Letavernier B, Haymann JP, Baud L (2012) The role of calpains in myocardial remodelling and heart failure. Cardiovasc Res. doi:10.​1093/​cvr/​cvs099 PubMed
21.
go back to reference Lubisch W, Beckenbach E, Bopp S, Hofmann HP, Kartal A, Kastel C, Lindner T, Metz-Garrecht M, Reeb J, Regner F, Vierling M, Moller A (2003) Benzoylalanine-derived ketoamides carrying vinylbenzyl amino residues: discovery of potent water-soluble calpain inhibitors with oral bioavailability. J Med Chem 46:2404–2412. doi:10.1021/jm0210717 CrossRefPubMed Lubisch W, Beckenbach E, Bopp S, Hofmann HP, Kartal A, Kastel C, Lindner T, Metz-Garrecht M, Reeb J, Regner F, Vierling M, Moller A (2003) Benzoylalanine-derived ketoamides carrying vinylbenzyl amino residues: discovery of potent water-soluble calpain inhibitors with oral bioavailability. J Med Chem 46:2404–2412. doi:10.​1021/​jm0210717 CrossRefPubMed
22.
go back to reference Ma B, Zhang K, Hendrie C, Liang C, Li M, Doherty-Kirby A, Lajoie G (2003) PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom 17:2337–2342. doi:10.1002/rcm.1196 CrossRefPubMed Ma B, Zhang K, Hendrie C, Liang C, Li M, Doherty-Kirby A, Lajoie G (2003) PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom 17:2337–2342. doi:10.​1002/​rcm.​1196 CrossRefPubMed
25.
go back to reference Medeiros R, Kitazawa M, Chabrier MA, Cheng D, Baglietto-Vargas D, Kling A, Moeller A, Green KN, LaFerla FM (2012) Calpain inhibitor A-705253 mitigates Alzheimer’s disease-like pathology and cognitive decline in aged 3xTgAD mice. Am J Pathol 181:616–625. doi:10.1016/j.ajpath.2012.04.020 CrossRefPubMed Medeiros R, Kitazawa M, Chabrier MA, Cheng D, Baglietto-Vargas D, Kling A, Moeller A, Green KN, LaFerla FM (2012) Calpain inhibitor A-705253 mitigates Alzheimer’s disease-like pathology and cognitive decline in aged 3xTgAD mice. Am J Pathol 181:616–625. doi:10.​1016/​j.​ajpath.​2012.​04.​020 CrossRefPubMed
26.
go back to reference Miyazaki T, Taketomi Y, Takimoto M, Lei XF, Arita S, Kim-Kaneyama JR, Arata S, Ohata H, Ota H, Murakami M, Miyazaki A (2011) m-Calpain induction in vascular endothelial cells on human and mouse atheromas and its roles in VE-cadherin disorganization and atherosclerosis. Circulation 124:2522–2532. doi:10.1161/CIRCULATIONAHA.111.021675 CrossRefPubMed Miyazaki T, Taketomi Y, Takimoto M, Lei XF, Arita S, Kim-Kaneyama JR, Arata S, Ohata H, Ota H, Murakami M, Miyazaki A (2011) m-Calpain induction in vascular endothelial cells on human and mouse atheromas and its roles in VE-cadherin disorganization and atherosclerosis. Circulation 124:2522–2532. doi:10.​1161/​CIRCULATIONAHA.​111.​021675 CrossRefPubMed
27.
go back to reference Moncada S (1980) The role of prostacyclin and thromboxane A2 in the regulation of platelet behaviour. Mater Med Pol 12:207–212PubMed Moncada S (1980) The role of prostacyclin and thromboxane A2 in the regulation of platelet behaviour. Mater Med Pol 12:207–212PubMed
28.
go back to reference Moncada S, Gryglewski R, Bunting S, Vane JR (1976) An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263:663–665CrossRefPubMed Moncada S, Gryglewski R, Bunting S, Vane JR (1976) An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263:663–665CrossRefPubMed
29.
go back to reference Ni R, Zheng D, Xiong S, Hill DJ, Sun T, Gardiner RB, Fan GC, Lu Y, Abel ED, Greer PA, Peng T (2016) Mitochondrial calpain-1 disrupts ATP synthase and induces superoxide generation in type 1 diabetic hearts: a novel mechanism contributing to diabetic cardiomyopathy. Diabetes 65:255–268. doi:10.1016/j.bbadis.2016.08.005 PubMed Ni R, Zheng D, Xiong S, Hill DJ, Sun T, Gardiner RB, Fan GC, Lu Y, Abel ED, Greer PA, Peng T (2016) Mitochondrial calpain-1 disrupts ATP synthase and induces superoxide generation in type 1 diabetic hearts: a novel mechanism contributing to diabetic cardiomyopathy. Diabetes 65:255–268. doi:10.​1016/​j.​bbadis.​2016.​08.​005 PubMed
30.
go back to reference Nie H, Wu JL, Zhang M, Xu J, Zou MH (2006) Endothelial nitric oxide synthase-dependent tyrosine nitration of prostacyclin synthase in diabetes in vivo. Diabetes 55:3133–3141. doi:10.2337/db06-0505 CrossRefPubMed Nie H, Wu JL, Zhang M, Xu J, Zou MH (2006) Endothelial nitric oxide synthase-dependent tyrosine nitration of prostacyclin synthase in diabetes in vivo. Diabetes 55:3133–3141. doi:10.​2337/​db06-0505 CrossRefPubMed
31.
go back to reference Randriamboavonjy V, Isaak J, Elgheznawy A, Pistrosch F, Fromel T, Yin X, Badenhoop K, Heide H, Mayr M, Fleming I (2012) Calpain inhibition stabilizes the platelet proteome and reactivity in diabetes. Blood. doi:10.1182/blood-2011-12-399980 PubMed Randriamboavonjy V, Isaak J, Elgheznawy A, Pistrosch F, Fromel T, Yin X, Badenhoop K, Heide H, Mayr M, Fleming I (2012) Calpain inhibition stabilizes the platelet proteome and reactivity in diabetes. Blood. doi:10.​1182/​blood-2011-12-399980 PubMed
32.
go back to reference Randriamboavonjy V, Pistrosch F, Bolck B, Schwinger RH, Dixit M, Badenhoop K, Cohen RA, Busse R, Fleming I (2008) Platelet sarcoplasmic endoplasmic reticulum Ca2+-ATPase and µ-calpain activity are altered in type 2 diabetes mellitus and restored by rosiglitazone. Circulation 117:52–60. doi:10.1161/CIRCULATIONAHA.107.719807 CrossRefPubMed Randriamboavonjy V, Pistrosch F, Bolck B, Schwinger RH, Dixit M, Badenhoop K, Cohen RA, Busse R, Fleming I (2008) Platelet sarcoplasmic endoplasmic reticulum Ca2+-ATPase and µ-calpain activity are altered in type 2 diabetes mellitus and restored by rosiglitazone. Circulation 117:52–60. doi:10.​1161/​CIRCULATIONAHA.​107.​719807 CrossRefPubMed
36.
go back to reference Safiah MS, Vanhoutte M, Leung WS, Imran YM, Wan Sulaiman WA, Zaharil Mat SA, Suppian R, Ghulam Rasool AH (2013) Reduced expression of prostacyclin synthase and nitric oxide synthase in subcutaneous arteries of type 2 diabetic patients. Tohoku J Exp Med 231:217–222. doi:10.1620/tjem.231.217 CrossRef Safiah MS, Vanhoutte M, Leung WS, Imran YM, Wan Sulaiman WA, Zaharil Mat SA, Suppian R, Ghulam Rasool AH (2013) Reduced expression of prostacyclin synthase and nitric oxide synthase in subcutaneous arteries of type 2 diabetic patients. Tohoku J Exp Med 231:217–222. doi:10.​1620/​tjem.​231.​217 CrossRef
37.
go back to reference Scalia R, Gong Y, Berzins B, Zhao LJ, Sharma K (2007) Hyperglycemia is a major determinant of albumin permeability in diabetic microcirculation: the role of µ-calpain. Diabetes 56:1842–1849. doi:10.2337/db06-1198 CrossRefPubMed Scalia R, Gong Y, Berzins B, Zhao LJ, Sharma K (2007) Hyperglycemia is a major determinant of albumin permeability in diabetic microcirculation: the role of µ-calpain. Diabetes 56:1842–1849. doi:10.​2337/​db06-1198 CrossRefPubMed
39.
go back to reference Trachte GJ (1986) Prostacyclin mediates arachidonic acid-induced relaxation of rabbit isolated mesenteric arteries. J Cardiovasc Pharmacol 8:758–764PubMed Trachte GJ (1986) Prostacyclin mediates arachidonic acid-induced relaxation of rabbit isolated mesenteric arteries. J Cardiovasc Pharmacol 8:758–764PubMed
40.
go back to reference Vane JR, Moncada S (1980) The anti-thrombotic effects of prostacyclin. Acta Med Scand Suppl 642:11–22PubMed Vane JR, Moncada S (1980) The anti-thrombotic effects of prostacyclin. Acta Med Scand Suppl 642:11–22PubMed
43.
go back to reference Xi X, Flevaris P, Stojanovic A, Chishti A, Phillips DR, Lam SC, Du X (2006) Tyrosine phosphorylation of the integrin beta 3 subunit regulates beta 3 cleavage by calpain. J Biol Chem 281:29426–29430. doi:10.1074/jbc.C600039200 CrossRefPubMed Xi X, Flevaris P, Stojanovic A, Chishti A, Phillips DR, Lam SC, Du X (2006) Tyrosine phosphorylation of the integrin beta 3 subunit regulates beta 3 cleavage by calpain. J Biol Chem 281:29426–29430. doi:10.​1074/​jbc.​C600039200 CrossRefPubMed
44.
go back to reference Zhu N, Liu B, Luo W, Zhang Y, Li H, Li S, Zhou Y (2014) Vasoconstrictor role of cyclooxygenase-1-mediated prostacyclin synthesis in non-insulin-dependent diabetic mice induced by high-fat diet and streptozotocin. Am J Physiol Heart Circ Physiol 307:H319–H327. doi:10.1152/ajpheart.00022.2014 CrossRefPubMed Zhu N, Liu B, Luo W, Zhang Y, Li H, Li S, Zhou Y (2014) Vasoconstrictor role of cyclooxygenase-1-mediated prostacyclin synthesis in non-insulin-dependent diabetic mice induced by high-fat diet and streptozotocin. Am J Physiol Heart Circ Physiol 307:H319–H327. doi:10.​1152/​ajpheart.​00022.​2014 CrossRefPubMed
45.
go back to reference Zou M, Martin C, Ullrich V (1997) Tyrosine nitration as a mechanism of selective inactivation of prostacyclin synthase by peroxynitrite. Biol Chem 378:707–713CrossRefPubMed Zou M, Martin C, Ullrich V (1997) Tyrosine nitration as a mechanism of selective inactivation of prostacyclin synthase by peroxynitrite. Biol Chem 378:707–713CrossRefPubMed
Metadata
Title
Calpain 1 cleaves and inactivates prostacyclin synthase in mesenteric arteries from diabetic mice
Authors
Voahanginirina Randriamboavonjy
Anastasia Kyselova
Amro Elgheznawy
Sven Zukunft
Ilka Wittig
Ingrid Fleming
Publication date
01-01-2017
Publisher
Springer Berlin Heidelberg
Published in
Basic Research in Cardiology / Issue 1/2017
Print ISSN: 0300-8428
Electronic ISSN: 1435-1803
DOI
https://doi.org/10.1007/s00395-016-0596-8

Other articles of this Issue 1/2017

Basic Research in Cardiology 1/2017 Go to the issue