Skip to main content
Top
Published in: Basic Research in Cardiology 6/2012

01-11-2012 | Original Contribution

Connexin mimetic peptides inhibit Cx43 hemichannel opening triggered by voltage and intracellular Ca2+ elevation

Authors: Nan Wang, Marijke De Bock, Gudrun Antoons, Ashish K. Gadicherla, Mélissa Bol, Elke Decrock, William Howard Evans, Karin R. Sipido, Feliksas F. Bukauskas, Luc Leybaert

Published in: Basic Research in Cardiology | Issue 6/2012

Login to get access

Abstract

Connexin mimetic peptides (CxMPs), such as Gap26 and Gap27, are known as inhibitors of gap junction channels but evidence is accruing that these peptides also inhibit unapposed/non-junctional hemichannels (HCs) residing in the plasma membrane. We used voltage clamp studies to investigate the effect of Gap26/27 at the single channel level. Such an approach allows unequivocal identification of HC currents by their single channel conductance that is typically ~220 pS for Cx43. In HeLa cells stably transfected with Cx43 (HeLa-Cx43), Gap26/27 peptides inhibited Cx43 HC unitary currents over minutes and increased the voltage threshold for HC opening. By contrast, an elevation of intracellular calcium ([Ca2+]i) to 200–500 nM potentiated the unitary HC current activity and lowered the voltage threshold for HC opening. Interestingly, Gap26/27 inhibited the Ca2+-potentiated HC currents and prevented lowering of the voltage threshold for HC opening. Experiments on isolated pig ventricular cardiomyocytes, which display strong endogenous Cx43 expression, demonstrated voltage-activated unitary currents with biophysical properties of Cx43 HCs that were inhibited by small interfering RNA targeting Cx43. As observed in HeLa-Cx43 cells, HC current activity in ventricular cardiomyocytes was potentiated by [Ca2+]i elevation to 500 nM and was inhibited by Gap26/27. Our results indicate that under pathological conditions, when [Ca2+]i is elevated, Cx43 HC opening is promoted in cardiomyocytes and CxMPs counteract this effect.
Appendix
Available only for authorised users
Literature
1.
go back to reference Anselmi F, Hernandez VH, Crispino G, Seydel A, Ortolano S, Roper SD, Kessaris N, Richardson W, Rickheit G, Filippov MA, Monyer H, Mammano F (2008) ATP release through connexin hemichannels and gap junction transfer of second messengers propagate Ca2+ signals across the inner ear. Proc Natl Acad Sci USA 105:18770–18775. doi:10.1073/pnas.0800793105 PubMedCrossRef Anselmi F, Hernandez VH, Crispino G, Seydel A, Ortolano S, Roper SD, Kessaris N, Richardson W, Rickheit G, Filippov MA, Monyer H, Mammano F (2008) ATP release through connexin hemichannels and gap junction transfer of second messengers propagate Ca2+ signals across the inner ear. Proc Natl Acad Sci USA 105:18770–18775. doi:10.​1073/​pnas.​0800793105 PubMedCrossRef
3.
go back to reference Berthoud VM, Beyer EC, Seul KH (2000) Peptide inhibitors of intercellular communication. Am J Physiol Lung Cell Mol Physiol 279:L619–L622PubMed Berthoud VM, Beyer EC, Seul KH (2000) Peptide inhibitors of intercellular communication. Am J Physiol Lung Cell Mol Physiol 279:L619–L622PubMed
4.
go back to reference Boitano S, Evans WH (2000) Connexin mimetic peptides reversibly inhibit Ca(2+) signaling through gap junctions in airway cells. Am J Physiol Lung Cell Mol Physiol 279:L623–L630PubMed Boitano S, Evans WH (2000) Connexin mimetic peptides reversibly inhibit Ca(2+) signaling through gap junctions in airway cells. Am J Physiol Lung Cell Mol Physiol 279:L623–L630PubMed
5.
go back to reference Braet K, Vandamme W, Martin PE, Evans WH, Leybaert L (2003) Photoliberating inositol-1,4,5-trisphosphate triggers ATP release that is blocked by the connexin mimetic peptide gap 26. Cell Calcium 33:37–48PubMedCrossRef Braet K, Vandamme W, Martin PE, Evans WH, Leybaert L (2003) Photoliberating inositol-1,4,5-trisphosphate triggers ATP release that is blocked by the connexin mimetic peptide gap 26. Cell Calcium 33:37–48PubMedCrossRef
7.
go back to reference Bukauskas FF, Bukauskiene A, Verselis VK (2002) Conductance and permeability of the residual state of connexin43 gap junction channels. J Gen Physiol 119:171–185PubMedCrossRef Bukauskas FF, Bukauskiene A, Verselis VK (2002) Conductance and permeability of the residual state of connexin43 gap junction channels. J Gen Physiol 119:171–185PubMedCrossRef
9.
go back to reference Chaytor AT, Evans WH, Griffith TM (1997) Peptides homologous to extracellular loop motifs of connexin 43 reversibly abolish rhythmic contractile activity in rabbit arteries. J Physiol 503(Pt 1):99–110PubMedCrossRef Chaytor AT, Evans WH, Griffith TM (1997) Peptides homologous to extracellular loop motifs of connexin 43 reversibly abolish rhythmic contractile activity in rabbit arteries. J Physiol 503(Pt 1):99–110PubMedCrossRef
12.
go back to reference Contreras JE, Sanchez HA, Eugenin EA, Speidel D, Theis M, Willecke K, Bukauskas FF, Bennett MV, Saez JC (2002) Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture. Proc Natl Acad Sci USA 99:495–500. doi:10.1073/pnas.012589799 PubMedCrossRef Contreras JE, Sanchez HA, Eugenin EA, Speidel D, Theis M, Willecke K, Bukauskas FF, Bennett MV, Saez JC (2002) Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture. Proc Natl Acad Sci USA 99:495–500. doi:10.​1073/​pnas.​012589799 PubMedCrossRef
13.
go back to reference Cotrina ML, Kang J, Lin JH, Bueno E, Hansen TW, He L, Liu Y, Nedergaard M (1998) Astrocytic gap junctions remain open during ischemic conditions. J Neurosci 18:2520–2537PubMed Cotrina ML, Kang J, Lin JH, Bueno E, Hansen TW, He L, Liu Y, Nedergaard M (1998) Astrocytic gap junctions remain open during ischemic conditions. J Neurosci 18:2520–2537PubMed
14.
go back to reference De Bock M, Culot M, Wang N, Bol M, Decrock E, De Vuyst E, da Costa A, Dauwe I, Vinken M, Simon AM, Rogiers V, De LG, Evans WH, Bultynck G, Dupont G, Cecchelli R, Leybaert L (2011) Connexin channels provide a target to manipulate brain endothelial calcium dynamics and blood-brain barrier permeability. J Cereb Blood Flow Metab 31:1942–1957. doi:10.1038/jcbfm.2011.86 PubMedCrossRef De Bock M, Culot M, Wang N, Bol M, Decrock E, De Vuyst E, da Costa A, Dauwe I, Vinken M, Simon AM, Rogiers V, De LG, Evans WH, Bultynck G, Dupont G, Cecchelli R, Leybaert L (2011) Connexin channels provide a target to manipulate brain endothelial calcium dynamics and blood-brain barrier permeability. J Cereb Blood Flow Metab 31:1942–1957. doi:10.​1038/​jcbfm.​2011.​86 PubMedCrossRef
16.
go back to reference De Vuyst E, Wang N, Decrock E, De Bock M, Vinken M, Van Moorhem M, Lai C, Culot M, Rogiers V, Cecchelli R, Naus CC, Evans WH, Leybaert L (2009) Ca(2+) regulation of connexin 43 hemichannels in C6 glioma and glial cells. Cell Calcium 46:176–187. doi:10.1016/j.ceca.2009.07.002 PubMedCrossRef De Vuyst E, Wang N, Decrock E, De Bock M, Vinken M, Van Moorhem M, Lai C, Culot M, Rogiers V, Cecchelli R, Naus CC, Evans WH, Leybaert L (2009) Ca(2+) regulation of connexin 43 hemichannels in C6 glioma and glial cells. Cell Calcium 46:176–187. doi:10.​1016/​j.​ceca.​2009.​07.​002 PubMedCrossRef
17.
go back to reference Decrock E, DeVuyst E, Vinken M, Van Moorhem M, Vranckx K, Wang N, Van Laeken L, De Bock M, D’Herde K, Lai CP, Rogiers V, Evans WH, Naus CC, Leybaert L (2009) Connexin 43 hemichannels contribute to the propagation of apoptotic cell death in a rat C6 glioma cell model. Cell Death Differ 16:151–163. doi:10.1038/cdd.2008.138 PubMedCrossRef Decrock E, DeVuyst E, Vinken M, Van Moorhem M, Vranckx K, Wang N, Van Laeken L, De Bock M, D’Herde K, Lai CP, Rogiers V, Evans WH, Naus CC, Leybaert L (2009) Connexin 43 hemichannels contribute to the propagation of apoptotic cell death in a rat C6 glioma cell model. Cell Death Differ 16:151–163. doi:10.​1038/​cdd.​2008.​138 PubMedCrossRef
18.
go back to reference Elfgang C, Eckert R, Lichtenberg-Frate H, Butterweck A, Traub O, Klein RA, Hulser DF, Willecke K (1995) Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. J Cell Biol 129:805–817PubMedCrossRef Elfgang C, Eckert R, Lichtenberg-Frate H, Butterweck A, Traub O, Klein RA, Hulser DF, Willecke K (1995) Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. J Cell Biol 129:805–817PubMedCrossRef
19.
20.
go back to reference Evans WH, Boitano S (2001) Connexin mimetic peptides: specific inhibitors of gap-junctional intercellular communication. Biochem Soc Trans 29:606–612PubMedCrossRef Evans WH, Boitano S (2001) Connexin mimetic peptides: specific inhibitors of gap-junctional intercellular communication. Biochem Soc Trans 29:606–612PubMedCrossRef
21.
go back to reference Evans WH, Carlile G, Rahman S, Torok K (1992) Gap junction communication channel: peptides and anti-peptide antibodies as structural probes. Biochem Soc Trans 20:856–861PubMed Evans WH, Carlile G, Rahman S, Torok K (1992) Gap junction communication channel: peptides and anti-peptide antibodies as structural probes. Biochem Soc Trans 20:856–861PubMed
23.
go back to reference Harris AL (2002) Voltage-sensing and substate rectification: moving parts of connexin channels. J Gen Physiol 119:165–169PubMedCrossRef Harris AL (2002) Voltage-sensing and substate rectification: moving parts of connexin channels. J Gen Physiol 119:165–169PubMedCrossRef
26.
go back to reference Johansen D, Cruciani V, Sundset R, Ytrehus K, Mikalsen SO (2011) Ischemia induces closure of gap junctional channels and opening of hemichannels in heart-derived cells and tissue. Cell Physiol Biochem 28:103–114. doi:10.1159/000331719 PubMedCrossRef Johansen D, Cruciani V, Sundset R, Ytrehus K, Mikalsen SO (2011) Ischemia induces closure of gap junctional channels and opening of hemichannels in heart-derived cells and tissue. Cell Physiol Biochem 28:103–114. doi:10.​1159/​000331719 PubMedCrossRef
30.
go back to reference Kim DY, Kam Y, Koo SK, Joe CO (1999) Gating connexin 43 channels reconstituted in lipid vesicles by mitogen-activated protein kinase phosphorylation. J Biol Chem 274:5581–5587PubMedCrossRef Kim DY, Kam Y, Koo SK, Joe CO (1999) Gating connexin 43 channels reconstituted in lipid vesicles by mitogen-activated protein kinase phosphorylation. J Biol Chem 274:5581–5587PubMedCrossRef
31.
go back to reference Kondo RP, Wang SY, John SA, Weiss JN, Goldhaber JI (2000) Metabolic inhibition activates a non-selective current through connexin hemichannels in isolated ventricular myocytes. J Mol Cell Cardiol 32:1859–1872. doi:10.1006/jmcc.2000.1220 PubMedCrossRef Kondo RP, Wang SY, John SA, Weiss JN, Goldhaber JI (2000) Metabolic inhibition activates a non-selective current through connexin hemichannels in isolated ventricular myocytes. J Mol Cell Cardiol 32:1859–1872. doi:10.​1006/​jmcc.​2000.​1220 PubMedCrossRef
34.
go back to reference Li F, Sugishita K, Su Z, Ueda I, Barry WH (2001) Activation of connexin-43 hemichannels can elevate [Ca(2+)]i and [Na(+)]i in rabbit ventricular myocytes during metabolic inhibition. J Mol Cell Cardiol 33:2145–2155. doi:10.1006/jmcc.2001.1477 PubMedCrossRef Li F, Sugishita K, Su Z, Ueda I, Barry WH (2001) Activation of connexin-43 hemichannels can elevate [Ca(2+)]i and [Na(+)]i in rabbit ventricular myocytes during metabolic inhibition. J Mol Cell Cardiol 33:2145–2155. doi:10.​1006/​jmcc.​2001.​1477 PubMedCrossRef
37.
39.
go back to reference Orellana JA, Saez PJ, Shoji KF, Schalper KA, Palacios-Prado N, Velarde V, Giaume C, Bennett MV, Saez JC (2009) Modulation of brain hemichannels and gap junction channels by pro-inflammatory agents and their possible role in neurodegeneration. Antioxid Redox Signal 11:369–399. doi:10.1089/ars.2008.2130 PubMedCrossRef Orellana JA, Saez PJ, Shoji KF, Schalper KA, Palacios-Prado N, Velarde V, Giaume C, Bennett MV, Saez JC (2009) Modulation of brain hemichannels and gap junction channels by pro-inflammatory agents and their possible role in neurodegeneration. Antioxid Redox Signal 11:369–399. doi:10.​1089/​ars.​2008.​2130 PubMedCrossRef
42.
go back to reference Palacios-Prado N, Briggs SW, Skeberdis VA, Pranevicius M, Bennett MV, Bukauskas FF (2010) pH-dependent modulation of voltage gating in connexin45 homotypic and connexin45/connexin43 heterotypic gap junctions. Proc Natl Acad Sci USA 107:9897–9902. doi:10.1073/pnas.1004552107 PubMedCrossRef Palacios-Prado N, Briggs SW, Skeberdis VA, Pranevicius M, Bennett MV, Bukauskas FF (2010) pH-dependent modulation of voltage gating in connexin45 homotypic and connexin45/connexin43 heterotypic gap junctions. Proc Natl Acad Sci USA 107:9897–9902. doi:10.​1073/​pnas.​1004552107 PubMedCrossRef
46.
47.
go back to reference Ponsaerts R, De Vuyst E, Retamal M, D’hondt C, Vermeire D, Wang N, De Smedt H, Zimmermann P, Himpens B, Vereecke J, Leybaert L, Bultynck G (2010) Intramolecular loop/tail interactions are essential for connexin 43-hemichannel activity. FASEB J 24:4378–4395. doi:10.1096/fj.09-153007 PubMedCrossRef Ponsaerts R, De Vuyst E, Retamal M, D’hondt C, Vermeire D, Wang N, De Smedt H, Zimmermann P, Himpens B, Vereecke J, Leybaert L, Bultynck G (2010) Intramolecular loop/tail interactions are essential for connexin 43-hemichannel activity. FASEB J 24:4378–4395. doi:10.​1096/​fj.​09-153007 PubMedCrossRef
49.
go back to reference Retamal MA, Cortes CJ, Reuss L, Bennett MV, Saez JC (2006) S-nitrosylation and permeation through connexin 43 hemichannels in astrocytes: induction by oxidant stress and reversal by reducing agents. Proc Natl Acad Sci USA 103:4475–4480. doi:10.1073/pnas.0511118103 PubMedCrossRef Retamal MA, Cortes CJ, Reuss L, Bennett MV, Saez JC (2006) S-nitrosylation and permeation through connexin 43 hemichannels in astrocytes: induction by oxidant stress and reversal by reducing agents. Proc Natl Acad Sci USA 103:4475–4480. doi:10.​1073/​pnas.​0511118103 PubMedCrossRef
50.
52.
go back to reference Robertson J, Lang S, Lambert PA, Martin PE (2010) Peptidoglycan derived from Staphylococcus epidermidis induces Connexin43 hemichannel activity with consequences on the innate immune response in endothelial cells. Biochem J 432:133–143. doi:10.1042/BJ20091753 PubMedCrossRef Robertson J, Lang S, Lambert PA, Martin PE (2010) Peptidoglycan derived from Staphylococcus epidermidis induces Connexin43 hemichannel activity with consequences on the innate immune response in endothelial cells. Biochem J 432:133–143. doi:10.​1042/​BJ20091753 PubMedCrossRef
54.
go back to reference Ruiz-Meana M, Rodriguez-Sinovas A, Cabestrero A, Boengler K, Heusch G, Garcia-Dorado D (2008) Mitochondrial connexin43 as a new player in the pathophysiology of myocardial ischaemia–reperfusion injury. Cardiovasc Res 77:325–333. doi:10.1093/cvr/cvm062 PubMedCrossRef Ruiz-Meana M, Rodriguez-Sinovas A, Cabestrero A, Boengler K, Heusch G, Garcia-Dorado D (2008) Mitochondrial connexin43 as a new player in the pathophysiology of myocardial ischaemia–reperfusion injury. Cardiovasc Res 77:325–333. doi:10.​1093/​cvr/​cvm062 PubMedCrossRef
57.
go back to reference Schalper KA, Palacios-Prado N, Retamal MA, Shoji KF, Martinez AD, Saez JC (2008) Connexin hemichannel composition determines the FGF-1-induced membrane permeability and free [Ca2+]i responses. Mol Biol Cell 19:3501–3513. doi:10.1091/mbc.E07-12-1240 PubMedCrossRef Schalper KA, Palacios-Prado N, Retamal MA, Shoji KF, Martinez AD, Saez JC (2008) Connexin hemichannel composition determines the FGF-1-induced membrane permeability and free [Ca2+]i responses. Mol Biol Cell 19:3501–3513. doi:10.​1091/​mbc.​E07-12-1240 PubMedCrossRef
58.
60.
go back to reference Schulz R, Gres P, Skyschally A, Duschin A, Belosjorow S, Konietzka I, Heusch G (2003) Ischemic preconditioning preserves connexin 43 phosphorylation during sustained ischemia in pig hearts in vivo. FASEB J 17:1355–1357. doi:10.1096/fj.02-0975fje PubMed Schulz R, Gres P, Skyschally A, Duschin A, Belosjorow S, Konietzka I, Heusch G (2003) Ischemic preconditioning preserves connexin 43 phosphorylation during sustained ischemia in pig hearts in vivo. FASEB J 17:1355–1357. doi:10.​1096/​fj.​02-0975fje PubMed
61.
62.
go back to reference Silver IA, Erecinska M (1990) Intracellular and extracellular changes of [Ca2+] in hypoxia and ischemia in rat brain in vivo. J Gen Physiol 95:837–866PubMedCrossRef Silver IA, Erecinska M (1990) Intracellular and extracellular changes of [Ca2+] in hypoxia and ischemia in rat brain in vivo. J Gen Physiol 95:837–866PubMedCrossRef
63.
go back to reference Stankovicova T, Szilard M, De Scheerder I, Sipido KR (2000) M cells and transmural heterogeneity of action potential configuration in myocytes from the left ventricular wall of the pig heart. Cardiovasc Res 45:952–960PubMedCrossRef Stankovicova T, Szilard M, De Scheerder I, Sipido KR (2000) M cells and transmural heterogeneity of action potential configuration in myocytes from the left ventricular wall of the pig heart. Cardiovasc Res 45:952–960PubMedCrossRef
64.
go back to reference Thibault O, Porter NM, Landfield PW (1993) Low Ba2+ and Ca2+ induce a sustained high probability of repolarization openings of L-type Ca2+ channels in hippocampal neurons: physiological implications. Proc Natl Acad Sci USA 90:11792–11796PubMedCrossRef Thibault O, Porter NM, Landfield PW (1993) Low Ba2+ and Ca2+ induce a sustained high probability of repolarization openings of L-type Ca2+ channels in hippocampal neurons: physiological implications. Proc Natl Acad Sci USA 90:11792–11796PubMedCrossRef
65.
go back to reference Torok K, Stauffer K, Evans WH (1997) Connexin 32 of gap junctions contains two cytoplasmic calmodulin-binding domains. Biochem J 326(Pt 2):479–483PubMed Torok K, Stauffer K, Evans WH (1997) Connexin 32 of gap junctions contains two cytoplasmic calmodulin-binding domains. Biochem J 326(Pt 2):479–483PubMed
68.
go back to reference Wang HZ, Day N, Valcic M, Hsieh K, Serels S, Brink PR, Christ GJ (2001) Intercellular communication in cultured human vascular smooth muscle cells. Am J Physiol Cell Physiol 281:C75–C88PubMed Wang HZ, Day N, Valcic M, Hsieh K, Serels S, Brink PR, Christ GJ (2001) Intercellular communication in cultured human vascular smooth muscle cells. Am J Physiol Cell Physiol 281:C75–C88PubMed
70.
go back to reference Warner A, Clements DK, Parikh S, Evans WH, DeHaan RL (1995) Specific motifs in the external loops of connexin proteins can determine gap junction formation between chick heart myocytes. J Physiol 488(Pt 3):721–728PubMed Warner A, Clements DK, Parikh S, Evans WH, DeHaan RL (1995) Specific motifs in the external loops of connexin proteins can determine gap junction formation between chick heart myocytes. J Physiol 488(Pt 3):721–728PubMed
71.
go back to reference Willecke K, Eiberger J, Degen J, Eckardt D, Romualdi A, Guldenagel M, Deutsch U, Sohl G (2002) Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem 383:725–737. doi:10.1515/BC.2002.076 PubMedCrossRef Willecke K, Eiberger J, Degen J, Eckardt D, Romualdi A, Guldenagel M, Deutsch U, Sohl G (2002) Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem 383:725–737. doi:10.​1515/​BC.​2002.​076 PubMedCrossRef
73.
go back to reference Ye ZC, Wyeth MS, Baltan-Tekkok S, Ransom BR (2003) Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci 23:3588–3596PubMed Ye ZC, Wyeth MS, Baltan-Tekkok S, Ransom BR (2003) Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci 23:3588–3596PubMed
74.
go back to reference Zhang Y, Hartmann HA, Satin J (1999) Glycosylation influences voltage-dependent gating of cardiac and skeletal muscle sodium channels. J Membr Biol 171:195–207PubMedCrossRef Zhang Y, Hartmann HA, Satin J (1999) Glycosylation influences voltage-dependent gating of cardiac and skeletal muscle sodium channels. J Membr Biol 171:195–207PubMedCrossRef
Metadata
Title
Connexin mimetic peptides inhibit Cx43 hemichannel opening triggered by voltage and intracellular Ca2+ elevation
Authors
Nan Wang
Marijke De Bock
Gudrun Antoons
Ashish K. Gadicherla
Mélissa Bol
Elke Decrock
William Howard Evans
Karin R. Sipido
Feliksas F. Bukauskas
Luc Leybaert
Publication date
01-11-2012
Publisher
Springer-Verlag
Published in
Basic Research in Cardiology / Issue 6/2012
Print ISSN: 0300-8428
Electronic ISSN: 1435-1803
DOI
https://doi.org/10.1007/s00395-012-0304-2

Other articles of this Issue 6/2012

Basic Research in Cardiology 6/2012 Go to the issue