Skip to main content
Top
Published in: Basic Research in Cardiology 1/2010

Open Access 01-01-2010 | Original Contribution

Sonic hedgehog is a potent chemoattractant for human monocytes: diabetes mellitus inhibits Sonic hedgehog-induced monocyte chemotaxis

Authors: Marina Dunaeva, Stefan Voo, Carolien van Oosterhoud, Johannes Waltenberger

Published in: Basic Research in Cardiology | Issue 1/2010

Login to get access

Abstract

The aim of the present study was to evaluate the expression of hedgehog (Hh) signaling molecules and the chemotactic activity of Sonic hedgehog (Shh) in monocytes from control (CTR) and diabetic patients with or without coronary artery disease (CAD). Previously several studies demonstrated that exogenous administration of Shh can induce angiogenesis and accelerate repair of ischemic myocardium and skeletal muscles. Blood samples were collected from (1) CTR (n = 25); (2) patients with stable CAD without diabetes mellitus (CAD−DM, n = 10); and (3) with stable CAD with DM (CAD+DM, n = 15). Monocytes were isolated by Percoll gradient and subjected to PCR and chemotaxis analysis. Hh signaling molecules were expressed in human monocytes, and Shh-induced monocyte chemotaxis. Shh-stimulated migration of monocytes from CTR measured 172.5 ± 90% and a maximal stimulation was observed at Shh concentration of 1 μg/ml. However, Shh failed to induce migration of monocytes from CAD+DM (94.3 ± 27%, P < 0.001 vs. CTR). The impaired response to Shh was associated with strong transcriptional upregulation of the receptor Ptc, while expression of downstream molecules was not altered. Moreover, Ptc is strongly expressed in macrophages of human aortic atherosclerotic plaque. Thus, Shh is a potent chemoattractant for monocytes and it activates classical signaling pathways related to migration. The Shh signaling was negatively affected by DM which might be involved in the pathogenesis of DM-related complications.
Literature
1.
go back to reference Asai J, Takenaka H, Kusano K, Ii M, Luedemann C, Curry C, Eaton E, Iwakura A, Tsutsumi Y, Hamada H, Kishimoto S, Thorne T, Kishore R, Losordo D (2006) Topical sonic hedgehog gene therapy accelerates wound healing in diabetes by enhancing endothelial progenitor cell-mediated microvascular remodeling. Circulation 113:2413–2424CrossRefPubMed Asai J, Takenaka H, Kusano K, Ii M, Luedemann C, Curry C, Eaton E, Iwakura A, Tsutsumi Y, Hamada H, Kishimoto S, Thorne T, Kishore R, Losordo D (2006) Topical sonic hedgehog gene therapy accelerates wound healing in diabetes by enhancing endothelial progenitor cell-mediated microvascular remodeling. Circulation 113:2413–2424CrossRefPubMed
2.
go back to reference Barleon B, Sozzani S, Zhou D, Weich H, Mantovani A, Marmé D (1996) Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87:3336–3343PubMed Barleon B, Sozzani S, Zhou D, Weich H, Mantovani A, Marmé D (1996) Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87:3336–3343PubMed
3.
go back to reference Beckers L, Heeneman S, Wang L, Burkly L, Rousch M, Davidson N, Gijbels M, de Winther M, Daemen M, Lutgens E (2007) Disruption of hedgehog signalling in ApoE−/− mice reduces plasma lipid levels, but increases atherosclerosis due to enhanced lipid uptake by macrophages. J Pathol 212:420–428CrossRefPubMed Beckers L, Heeneman S, Wang L, Burkly L, Rousch M, Davidson N, Gijbels M, de Winther M, Daemen M, Lutgens E (2007) Disruption of hedgehog signalling in ApoE−/− mice reduces plasma lipid levels, but increases atherosclerosis due to enhanced lipid uptake by macrophages. J Pathol 212:420–428CrossRefPubMed
4.
go back to reference Bhardwaj G, Murdoch B, Wu D, Baker D, Williams K, Chadwick K, Ling L, Karanu F, Bhatia M (2001) Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol 2:172–180CrossRefPubMed Bhardwaj G, Murdoch B, Wu D, Baker D, Williams K, Chadwick K, Ling L, Karanu F, Bhatia M (2001) Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol 2:172–180CrossRefPubMed
5.
go back to reference Bouma G, Coppens J, Lam-Tse W, Luini W, Sintnicolaas K, Levering W, Sozzani S, Drexhage H, Versnel M (2005) An increased MRP8/14 expression and adhesion, but a decreased migration towards proinflammatory chemokines of type 1 diabetes monocytes. Clin Exp Immunol 141:509–517CrossRefPubMed Bouma G, Coppens J, Lam-Tse W, Luini W, Sintnicolaas K, Levering W, Sozzani S, Drexhage H, Versnel M (2005) An increased MRP8/14 expression and adhesion, but a decreased migration towards proinflammatory chemokines of type 1 diabetes monocytes. Clin Exp Immunol 141:509–517CrossRefPubMed
6.
go back to reference Charron F, Stein E, Jeong J, McMahon AP, Tessier-Lavigne M (2003) The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell 113:11–23CrossRefPubMed Charron F, Stein E, Jeong J, McMahon AP, Tessier-Lavigne M (2003) The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell 113:11–23CrossRefPubMed
7.
go back to reference Chen Y, Li X, Tian L, Lui V, Dallman M, Lamb J, Tam P (2007) Inhibition of sonic hedgehog signaling reduces chronic rejection and prolongs allograft survival in a rat orthotopic small bowel transplantation model. Transplantation 83:1351–1357CrossRefPubMed Chen Y, Li X, Tian L, Lui V, Dallman M, Lamb J, Tam P (2007) Inhibition of sonic hedgehog signaling reduces chronic rejection and prolongs allograft survival in a rat orthotopic small bowel transplantation model. Transplantation 83:1351–1357CrossRefPubMed
8.
go back to reference Chen J, Taipale J, Cooper M, Beachy P (2002) Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 16:2743–2748CrossRefPubMed Chen J, Taipale J, Cooper M, Beachy P (2002) Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 16:2743–2748CrossRefPubMed
9.
go back to reference Cipolletta C, Ryan K, Hanna E, Trimble E (2005) Activation of peripheral blood CD14+ monocytes occurs in diabetes. Diabetes 549:2779–2786CrossRef Cipolletta C, Ryan K, Hanna E, Trimble E (2005) Activation of peripheral blood CD14+ monocytes occurs in diabetes. Diabetes 549:2779–2786CrossRef
10.
go back to reference Cohen M (2003) The hedgehog signaling network. Am J Med Genetics 123:5–28CrossRef Cohen M (2003) The hedgehog signaling network. Am J Med Genetics 123:5–28CrossRef
11.
go back to reference Cousin W, Fontaine C, Dani C, Peraldi P (2007) Hedgehog and adipogenesis: fat and fiction. Biochimie 89:1447–1453CrossRefPubMed Cousin W, Fontaine C, Dani C, Peraldi P (2007) Hedgehog and adipogenesis: fat and fiction. Biochimie 89:1447–1453CrossRefPubMed
12.
go back to reference Deshpande G, Swanhart L, Chiang P, Schedl P (2001) Hedgehog signaling in germ cell migration. Cell 106:759–769CrossRefPubMed Deshpande G, Swanhart L, Chiang P, Schedl P (2001) Hedgehog signaling in germ cell migration. Cell 106:759–769CrossRefPubMed
13.
go back to reference Dyer M, Farrington S, Mohn D, Munday J, Baron M (2001) Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo. Development 128:1717–1730PubMed Dyer M, Farrington S, Mohn D, Munday J, Baron M (2001) Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo. Development 128:1717–1730PubMed
14.
go back to reference Fan L, Pepicelli C, Dibble C, Catbagan W, Zarycki J, Laciak R, Gipp J, Shaw A, Lamm M, Munoz A, Lipinski R, Thrasher J, Bushman W (2004) Hedgehog signaling promotes prostate xenograft tumor growth. Endocrinology 145:3961–3970CrossRefPubMed Fan L, Pepicelli C, Dibble C, Catbagan W, Zarycki J, Laciak R, Gipp J, Shaw A, Lamm M, Munoz A, Lipinski R, Thrasher J, Bushman W (2004) Hedgehog signaling promotes prostate xenograft tumor growth. Endocrinology 145:3961–3970CrossRefPubMed
15.
16.
go back to reference Freedman R, Ma Q, Wang E, Gallardo S, Gordon I, Shin J, Jin P, Stroncek D, Marincola F (2008) Migration deficit in monocyte-macrophages in human ovarian cancer. Cancer Immunol Immunother 57:635–645CrossRefPubMed Freedman R, Ma Q, Wang E, Gallardo S, Gordon I, Shin J, Jin P, Stroncek D, Marincola F (2008) Migration deficit in monocyte-macrophages in human ovarian cancer. Cancer Immunol Immunother 57:635–645CrossRefPubMed
17.
go back to reference Fu J, Liu W, Zhou J, Sun H, Xu H, Luo L, Zhang H, Zhou YF (2006) Sonic hedgehog protein promotes bone marrow-derived endothelial progenitor cell proliferation, migration and VEGF production via PI 3-kinase/Akt signaling pathways. Acta Pharmacol Sin 27:685–693CrossRefPubMed Fu J, Liu W, Zhou J, Sun H, Xu H, Luo L, Zhang H, Zhou YF (2006) Sonic hedgehog protein promotes bone marrow-derived endothelial progenitor cell proliferation, migration and VEGF production via PI 3-kinase/Akt signaling pathways. Acta Pharmacol Sin 27:685–693CrossRefPubMed
18.
go back to reference Hochman E, Castiel A, Jacob-Hirsch J, Amariglio N, Izraeli S (2006) Molecular pathways regulating pro-migratory effects of Hedgehog signaling. J Biol Chem 281:33860–33870CrossRefPubMed Hochman E, Castiel A, Jacob-Hirsch J, Amariglio N, Izraeli S (2006) Molecular pathways regulating pro-migratory effects of Hedgehog signaling. J Biol Chem 281:33860–33870CrossRefPubMed
19.
go back to reference Kamps A, Coffman C (2005) G protein-coupled receptor roles in cell migration and cell death decisions. Ann N Y Acad Sci 1049:17–23CrossRefPubMed Kamps A, Coffman C (2005) G protein-coupled receptor roles in cell migration and cell death decisions. Ann N Y Acad Sci 1049:17–23CrossRefPubMed
20.
go back to reference Katz S, Klein B, Fishman P, Djaldetti M (1983) Phagocytotic activity on monocytes from diabetic patients. Diabetes Care 6:479–482CrossRefPubMed Katz S, Klein B, Fishman P, Djaldetti M (1983) Phagocytotic activity on monocytes from diabetic patients. Diabetes Care 6:479–482CrossRefPubMed
21.
go back to reference Kusano K, Pola R, Murayama T, Curry C, Kawamoto A, Iwakura A, Shintani S, Ii M, Asai J, Tkebuchava T, Thorne T, Takenaka H, Aikawa R, Goukassian D, von Samson P, Hamada H, Yoon YS, Silver M, Eaton E, Ma H, Heyd L, Kearney M, Munger W, Porter JA, Kishore R, Losordo DW (2005) Sonic hedgehog myocardial gene therapy: tissue repair through transient reconstitution of embryonic signaling. Nat Med 11:1197–1204CrossRefPubMed Kusano K, Pola R, Murayama T, Curry C, Kawamoto A, Iwakura A, Shintani S, Ii M, Asai J, Tkebuchava T, Thorne T, Takenaka H, Aikawa R, Goukassian D, von Samson P, Hamada H, Yoon YS, Silver M, Eaton E, Ma H, Heyd L, Kearney M, Munger W, Porter JA, Kishore R, Losordo DW (2005) Sonic hedgehog myocardial gene therapy: tissue repair through transient reconstitution of embryonic signaling. Nat Med 11:1197–1204CrossRefPubMed
22.
go back to reference Lavine K, White A, Park C, Smith C, Choi K, Long F, Hui C, Ornitz D (2006) Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development. Genes Dev 20:1651–1666CrossRefPubMed Lavine K, White A, Park C, Smith C, Choi K, Long F, Hui C, Ornitz D (2006) Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development. Genes Dev 20:1651–1666CrossRefPubMed
23.
go back to reference Lowrey J, Stewart G, Lindey S, Hoyne G, Dallman M, Howie S, Lamb J (2002) Sonic hedgehog promotes cell cycle progression in activated peripheral CD4(+) T lymphocytes. J Immunol 169:1869–1875PubMed Lowrey J, Stewart G, Lindey S, Hoyne G, Dallman M, Howie S, Lamb J (2002) Sonic hedgehog promotes cell cycle progression in activated peripheral CD4(+) T lymphocytes. J Immunol 169:1869–1875PubMed
24.
go back to reference Merchán P, Bribián A, Sánchez-Camacho C, Lezameta M, Bovolenta P, de Castro F (2007) Sonic hedgehog promotes the migration and proliferation of optic nerve oligodendrocyte precursors. Mol Cell Neurosci 36:355–368CrossRefPubMed Merchán P, Bribián A, Sánchez-Camacho C, Lezameta M, Bovolenta P, de Castro F (2007) Sonic hedgehog promotes the migration and proliferation of optic nerve oligodendrocyte precursors. Mol Cell Neurosci 36:355–368CrossRefPubMed
25.
go back to reference Morrow D, Sweeney C, Birney Y, Guha S, Collins N, Cummins P, Murphy R, Walls D, Redmond E, Cahill P (2007) Biomechanical regulation of hedgehog signaling in vascular smooth muscle cells in vitro and in vivo. Am J Physiol Cell Physiol 292:C488–C496CrossRefPubMed Morrow D, Sweeney C, Birney Y, Guha S, Collins N, Cummins P, Murphy R, Walls D, Redmond E, Cahill P (2007) Biomechanical regulation of hedgehog signaling in vascular smooth muscle cells in vitro and in vivo. Am J Physiol Cell Physiol 292:C488–C496CrossRefPubMed
26.
go back to reference O’Brien B, Huang Y, Geng X, Dutz J, Finegood D (2002) Phagocytosis of apoptotic cells by macrophages from NOD mice is reduced. Diabetes 51:2481–2488CrossRefPubMed O’Brien B, Huang Y, Geng X, Dutz J, Finegood D (2002) Phagocytosis of apoptotic cells by macrophages from NOD mice is reduced. Diabetes 51:2481–2488CrossRefPubMed
27.
go back to reference Pathi S, Pagan-Westphal S, Baker D, Garber E, Rayhorn P, Bumcrot D, Tabin CJ, Blake Pepinsky R, Williams KP (2001) Comparative biological responses to human Sonic, Indian, and Desert hedgehog. Mech Dev 106:107–117CrossRefPubMed Pathi S, Pagan-Westphal S, Baker D, Garber E, Rayhorn P, Bumcrot D, Tabin CJ, Blake Pepinsky R, Williams KP (2001) Comparative biological responses to human Sonic, Indian, and Desert hedgehog. Mech Dev 106:107–117CrossRefPubMed
28.
go back to reference Pepinsky R, Zeng C, Wen D, Rayhorn P, Baker D, Williams K, Bixler S, Ambrose C, Garber E, Miatkowski K, Taylor F, Wang E, Galdes A (1998) Identification of a palmitic acid-modified form of human Sonic hedgehog. J Biol Chem 273:14037–14045CrossRefPubMed Pepinsky R, Zeng C, Wen D, Rayhorn P, Baker D, Williams K, Bixler S, Ambrose C, Garber E, Miatkowski K, Taylor F, Wang E, Galdes A (1998) Identification of a palmitic acid-modified form of human Sonic hedgehog. J Biol Chem 273:14037–14045CrossRefPubMed
29.
go back to reference Pola R, Ling L, Silver M, Corbley M, Kearney M, Blake Pepinsky R, Shapiro R, Taylor F, Baker D, Asahara T, Isner J (2001) The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat Med 7:706–711CrossRefPubMed Pola R, Ling L, Silver M, Corbley M, Kearney M, Blake Pepinsky R, Shapiro R, Taylor F, Baker D, Asahara T, Isner J (2001) The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat Med 7:706–711CrossRefPubMed
30.
go back to reference Porter J, Young K, Beachy P (1996) Cholesterol modification of hedgehog signaling proteins in animal development. Science 274:255–259CrossRefPubMed Porter J, Young K, Beachy P (1996) Cholesterol modification of hedgehog signaling proteins in animal development. Science 274:255–259CrossRefPubMed
31.
go back to reference Riobo N, Lu K, Ai X, Haines G, Emerson C (2006) Phosphoinositide 3-kinase and Akt are essential for Sonic hedgehog signaling. Proc Natl Acad Sci USA 103:4505–4510CrossRefPubMed Riobo N, Lu K, Ai X, Haines G, Emerson C (2006) Phosphoinositide 3-kinase and Akt are essential for Sonic hedgehog signaling. Proc Natl Acad Sci USA 103:4505–4510CrossRefPubMed
32.
go back to reference Schaper W, Scholz D (2003) Factors regulating arteriogenesis. Arterioscler Thromb Vasc Biol 23:1143–1151CrossRefPubMed Schaper W, Scholz D (2003) Factors regulating arteriogenesis. Arterioscler Thromb Vasc Biol 23:1143–1151CrossRefPubMed
33.
go back to reference Shinozaki S, Ohnishi H, Hama K, Kita H, Yamamoto H, Osawa H, Sato K, Tamada K, Mashima H, Sugano K (2008) Indian hedgehog promotes the migration of rat activated pancreatic stellate cells by increasing membrane type-1 matrix metalloproteinase on the plasma membrane. J Cell Physiol 216:38–46CrossRefPubMed Shinozaki S, Ohnishi H, Hama K, Kita H, Yamamoto H, Osawa H, Sato K, Tamada K, Mashima H, Sugano K (2008) Indian hedgehog promotes the migration of rat activated pancreatic stellate cells by increasing membrane type-1 matrix metalloproteinase on the plasma membrane. J Cell Physiol 216:38–46CrossRefPubMed
34.
go back to reference Stephens L, Ellson C, Hawkins P (2002) Roles of PI3Ks in leukocyte chemotaxis and phagocytosis. Curr Opin Cell Biol 14:203–213CrossRefPubMed Stephens L, Ellson C, Hawkins P (2002) Roles of PI3Ks in leukocyte chemotaxis and phagocytosis. Curr Opin Cell Biol 14:203–213CrossRefPubMed
35.
go back to reference Stewart G, Hoyne G, Ahmad S, Jarman E, Wallace W, Harrison D, Haslett C, Lamb J, Howie S (2003) Expression of the developmental Sonic hedgehog (Shh) signalling pathway is up-regulated in chronic lung fibrosis and the Shh receptor patched 1 is present in circulating T lymphocytes. J Pathol 199:488–495CrossRefPubMed Stewart G, Hoyne G, Ahmad S, Jarman E, Wallace W, Harrison D, Haslett C, Lamb J, Howie S (2003) Expression of the developmental Sonic hedgehog (Shh) signalling pathway is up-regulated in chronic lung fibrosis and the Shh receptor patched 1 is present in circulating T lymphocytes. J Pathol 199:488–495CrossRefPubMed
36.
go back to reference Taipale J, Cooper M, Maiti T, Beachy P (2002) Patched acts catalytically to suppress the activity of Smoothened. Nature 418:892–897CrossRefPubMed Taipale J, Cooper M, Maiti T, Beachy P (2002) Patched acts catalytically to suppress the activity of Smoothened. Nature 418:892–897CrossRefPubMed
37.
go back to reference Taylor F, Wen D, Garber E, Carmillo A, Baker D, Arduini R, Williams KP, Weinreb PH, Rayhorn P, Hronowski X, Whitty A, Day ES, Boriack-Sjodin A, Shapiro RI, Galdes A, Pepinsky RB (2001) Enhanced potency of human Sonic hedgehog by hydrophobic modification. Biochemistry 40:4359–4371CrossRefPubMed Taylor F, Wen D, Garber E, Carmillo A, Baker D, Arduini R, Williams KP, Weinreb PH, Rayhorn P, Hronowski X, Whitty A, Day ES, Boriack-Sjodin A, Shapiro RI, Galdes A, Pepinsky RB (2001) Enhanced potency of human Sonic hedgehog by hydrophobic modification. Biochemistry 40:4359–4371CrossRefPubMed
38.
go back to reference Wakelin S, Forsythe J, Garden O, Howie S (2008) Commercially available recombinant sonic hedgehog up-regulates Ptc and modulates the cytokine and chemokine expression of human macrophages: an effect mediated by endotoxin contamination? Immunobiology 213:25–38CrossRefPubMed Wakelin S, Forsythe J, Garden O, Howie S (2008) Commercially available recombinant sonic hedgehog up-regulates Ptc and modulates the cytokine and chemokine expression of human macrophages: an effect mediated by endotoxin contamination? Immunobiology 213:25–38CrossRefPubMed
39.
go back to reference Waltenberger J (2001) Impaired collateral development in diabetes: potential cellular mechanisms and therapeutic implications. Cardiovasc Res 49:554–560CrossRefPubMed Waltenberger J (2001) Impaired collateral development in diabetes: potential cellular mechanisms and therapeutic implications. Cardiovasc Res 49:554–560CrossRefPubMed
40.
go back to reference Waltenberger J, Lange J, Kranz A (2000) Vascular endothelial growth factor-A-induced chemotaxis of monocytes is attenuated in patients with diabetes mellitus: a potential predictor for the individual capacity to develop collaterals. Circulation 102:185–190PubMed Waltenberger J, Lange J, Kranz A (2000) Vascular endothelial growth factor-A-induced chemotaxis of monocytes is attenuated in patients with diabetes mellitus: a potential predictor for the individual capacity to develop collaterals. Circulation 102:185–190PubMed
41.
go back to reference Watkins D, Berman D, Burkholder S, Wang B, Beachy P, Baylin S (2003) Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 422:313–317CrossRefPubMed Watkins D, Berman D, Burkholder S, Wang B, Beachy P, Baylin S (2003) Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 422:313–317CrossRefPubMed
42.
go back to reference Werner G, Richartz B, Heinke S, Ferrari M, Figulla H (2003) Impaired acute collateral recruitment as a possible mechanism for increased cardiac adverse events in patients with diabetes mellitus. Eur Heart J 24:1134–1142CrossRefPubMed Werner G, Richartz B, Heinke S, Ferrari M, Figulla H (2003) Impaired acute collateral recruitment as a possible mechanism for increased cardiac adverse events in patients with diabetes mellitus. Eur Heart J 24:1134–1142CrossRefPubMed
43.
go back to reference Zernecke A, Weber C (2005) Inflammatory mediators in atherosclerotic vascular disease. Basic Res Cardiol 100:93–101CrossRefPubMed Zernecke A, Weber C (2005) Inflammatory mediators in atherosclerotic vascular disease. Basic Res Cardiol 100:93–101CrossRefPubMed
44.
go back to reference Zhang C (2008) The role of inflammatory cytokines in endothelial dysfunction. Basic Res Cardiol 103:398–406CrossRefPubMed Zhang C (2008) The role of inflammatory cytokines in endothelial dysfunction. Basic Res Cardiol 103:398–406CrossRefPubMed
Metadata
Title
Sonic hedgehog is a potent chemoattractant for human monocytes: diabetes mellitus inhibits Sonic hedgehog-induced monocyte chemotaxis
Authors
Marina Dunaeva
Stefan Voo
Carolien van Oosterhoud
Johannes Waltenberger
Publication date
01-01-2010
Publisher
D. Steinkopff-Verlag
Published in
Basic Research in Cardiology / Issue 1/2010
Print ISSN: 0300-8428
Electronic ISSN: 1435-1803
DOI
https://doi.org/10.1007/s00395-009-0047-x

Other articles of this Issue 1/2010

Basic Research in Cardiology 1/2010 Go to the issue