Skip to main content
Top
Published in: European Journal of Nutrition 2/2019

01-03-2019 | Original Contribution

Moderate consumption of a soluble green/roasted coffee rich in caffeoylquinic acids reduces cardiovascular risk markers: results from a randomized, cross-over, controlled trial in healthy and hypercholesterolemic subjects

Authors: Sara Martínez-López, Beatriz Sarriá, R. Mateos, Laura Bravo-Clemente

Published in: European Journal of Nutrition | Issue 2/2019

Login to get access

Abstract

Purpose

Coffee is rich in bioactive compounds with health beneficial properties, with green coffee presenting higher phenol content than roasted. We evaluated the effects of regularly consuming realistic amounts of a green/roasted coffee blend on cardiovascular health-related biomarkers.

Methods

A randomized, cross-over, controlled study was carried out in 25 normocholesterolemic [total cholesterol (TC) < 200 mg/dL] and 27 hypercholesterolemic (TC 200–240 mg/dL) subjects. During 8 weeks, volunteers consumed 6 g/day of soluble green/roasted (35:65) coffee or a control beverage (water or an isotonic drink). Blood pressure, heart rate and body weight were monitored at the end of each intervention, and serum lipids [TC, HDL-C, LDL-C, VLDL-C, triglycerides and phospholipids], cytokines and chemokines (IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-10, IL-12, IL-13, IL-17, G-CSF, GM-CSF, MCP-1, MIP-1β, TNF-α, INF-γ), adhesion molecules (ICAM-1, VCAM-1), and C-reactive protein were measured. Plasma antioxidant capacity (FRAP, ORAC and ABTS methods), and lipid (malondialdehyde, MDA) and protein (carbonyl groups, CG) oxidation were also determined.

Results

Attending to the general lineal model of variance for repeated measures, after the green/roasted coffee intervention significant reductions in TC, LDL-C, VLDL-C and triglycerides levels (p = 0.006, 0.001, 0.003 and 0.017, respectively), and a significant group effect were observed (0.001, < 0.001, 0.019 and 0.027, respectively). Only within the hypercholesterolemic group, attending to the Bonferroni test, the aforementioned lipid parameters were significantly lower after regular green/roasted coffee intake compared to baseline values. Moreover, after the coffee stage, plasma antioxidant capacity improved, according to the increase in ORAC and FRAP values (p < 0.001 and p < 0.001, respectively) and decrease of MDA (p = 0.015) and CG (p < 0.001) levels, without differences between groups. Systolic (p = 0.001) and diastolic (p < 0.001) blood pressure, heart rate (p = 0.035), and body weight (p = 0.017) were reduced in both normo- and hypercholesterolemic groups.

Conclusion

Regular consumption of moderate amounts of a soluble green/roasted (35:65) coffee blend may contribute to improve cardiovascular health in moderately hypercholesterolemic people, as reducing serum lipids, blood pressure and body weight effects, as well as increasing plasma antioxidant capacity, have been observed. Moreover, positive influences on blood pressure, body weight, and plasma antioxidant capacity were obtained in the healthy group. Therefore, incorporation of green coffee beans into the coffee brew can be recommended as part of a dietary strategy to protect from cardiovascular disease.
Literature
1.
go back to reference Farah A (2012) Coffee constituents. In: Chu YF (ed) Coffee: emerging health effects and disease prevention. Blackwell Publishing Ltd, Oxford, pp 21–58CrossRef Farah A (2012) Coffee constituents. In: Chu YF (ed) Coffee: emerging health effects and disease prevention. Blackwell Publishing Ltd, Oxford, pp 21–58CrossRef
2.
go back to reference Jaiswal R, Matei MF, Subedi P, Kuhnert N (2014) Does roasted coffee contain chlorogenic acid lactones or/and cinnamoylshikimate esters? Food Res Int 61:214–227CrossRef Jaiswal R, Matei MF, Subedi P, Kuhnert N (2014) Does roasted coffee contain chlorogenic acid lactones or/and cinnamoylshikimate esters? Food Res Int 61:214–227CrossRef
3.
go back to reference Alonso-Salces RM, Serra F, Reniero F, Heberger K (2009) Botanical and geographical characterization of green coffee (Coffea arabica and Coffea canephora): chemometric evaluation of phenolic and methylxanthine contents. J Agric Food Chem 57:4224–4235CrossRefPubMed Alonso-Salces RM, Serra F, Reniero F, Heberger K (2009) Botanical and geographical characterization of green coffee (Coffea arabica and Coffea canephora): chemometric evaluation of phenolic and methylxanthine contents. J Agric Food Chem 57:4224–4235CrossRefPubMed
4.
go back to reference Baeza G, Sarriá B, Bravo L, Mateos R (2016) Exhaustive qualitative LC-DAD-MSn analysis of Arabica green coffee beans: cinnamoyl-glycosides and cinnamolyshikimic acids as new polyphenols in green coffee. J Agric Food Chem 64:9663–9674CrossRefPubMed Baeza G, Sarriá B, Bravo L, Mateos R (2016) Exhaustive qualitative LC-DAD-MSn analysis of Arabica green coffee beans: cinnamoyl-glycosides and cinnamolyshikimic acids as new polyphenols in green coffee. J Agric Food Chem 64:9663–9674CrossRefPubMed
5.
go back to reference Morales FJ, Somoza V, Fogliano V (2012) Physiological relevance of dietary melanoidins. Amino Acids 42:1097–1109CrossRefPubMed Morales FJ, Somoza V, Fogliano V (2012) Physiological relevance of dietary melanoidins. Amino Acids 42:1097–1109CrossRefPubMed
6.
go back to reference Ochiai R, Chikama A, Kataoka K, Tokimitsu I, Maekawa Y, Ohishi M, Rakugi M, Mikami H (2009) Effects of hydroxyhydroquinone-reduced coffee on vasoreactivity and blood pressure. Hypertens Res 32:969–974CrossRef Ochiai R, Chikama A, Kataoka K, Tokimitsu I, Maekawa Y, Ohishi M, Rakugi M, Mikami H (2009) Effects of hydroxyhydroquinone-reduced coffee on vasoreactivity and blood pressure. Hypertens Res 32:969–974CrossRef
7.
go back to reference Bakuradze T, Boehm N, Janzowski C, Lang R, Hofmann T, Stockis JP, Albert FW, Stiebitz H, Bytof G, Lantz I et al (2011) Antioxidant-rich coffee reduces DNA damage, elevates glutathione status and contributes to weight control: results from an intervention study. Mol Nutr Food Res 55:793–797CrossRefPubMed Bakuradze T, Boehm N, Janzowski C, Lang R, Hofmann T, Stockis JP, Albert FW, Stiebitz H, Bytof G, Lantz I et al (2011) Antioxidant-rich coffee reduces DNA damage, elevates glutathione status and contributes to weight control: results from an intervention study. Mol Nutr Food Res 55:793–797CrossRefPubMed
8.
go back to reference Lopez-Garcia E, Guallar-Castillon P, Leon-Muñoz L, Graciani A, Rodriguez-Artalejo F (2014) Coffee consumption and health-related quality of life. Clin Nutr 33:143–149CrossRefPubMed Lopez-Garcia E, Guallar-Castillon P, Leon-Muñoz L, Graciani A, Rodriguez-Artalejo F (2014) Coffee consumption and health-related quality of life. Clin Nutr 33:143–149CrossRefPubMed
9.
go back to reference Ohnaka K, Ikeda M, Maki T, Okada T, Shimazoe T, Adachi M, Nomura M, Takayanagi R, Kono S (2012) Effects of 16-week consumption of caffeinated and decaffeinated instant coffee on glucose metabolism in a randomized controlled trial. J Nutr Metab 207426 Ohnaka K, Ikeda M, Maki T, Okada T, Shimazoe T, Adachi M, Nomura M, Takayanagi R, Kono S (2012) Effects of 16-week consumption of caffeinated and decaffeinated instant coffee on glucose metabolism in a randomized controlled trial. J Nutr Metab 207426
11.
go back to reference Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, Fonarow GC, Gerazi SA, Horwich T, Januzzi JL et al (2013) ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 128:e240–e327PubMed Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, Fonarow GC, Gerazi SA, Horwich T, Januzzi JL et al (2013) ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 128:e240–e327PubMed
12.
go back to reference Bravo L, Mateos R, Sarriá B (2017) Preventive effect of coffee against cardiovascular diseases. In: Farah A (ed) Coffee: chemistry, quality and health implications. Royal Society of Chemistry, Oxford Bravo L, Mateos R, Sarriá B (2017) Preventive effect of coffee against cardiovascular diseases. In: Farah A (ed) Coffee: chemistry, quality and health implications. Royal Society of Chemistry, Oxford
13.
go back to reference Jee SH, He J, Appel LJ, Whelton PK, Suh I, Klag MJ (2001) Coffee consumption and serum lipids: a meta-analysis of randomized controlled clinical trials. Am J Epidemiol 153:353–362CrossRefPubMed Jee SH, He J, Appel LJ, Whelton PK, Suh I, Klag MJ (2001) Coffee consumption and serum lipids: a meta-analysis of randomized controlled clinical trials. Am J Epidemiol 153:353–362CrossRefPubMed
14.
go back to reference Cai L, Ma D, Zhang Y, Liu Z, Wang P (2012) The effect of coffee consumption on serum lipids: a meta-analysis of randomized controlled trials. Eur J Clin Nutr 66:872–877CrossRefPubMed Cai L, Ma D, Zhang Y, Liu Z, Wang P (2012) The effect of coffee consumption on serum lipids: a meta-analysis of randomized controlled trials. Eur J Clin Nutr 66:872–877CrossRefPubMed
15.
go back to reference Jee SH, He J, Whelton PK, Suh I, Klag MJ (1999) The effect of chronic coffee drinking on blood pressure. A meta-analysis of controlled clinical trials. Hypertension 33:647–652CrossRefPubMed Jee SH, He J, Whelton PK, Suh I, Klag MJ (1999) The effect of chronic coffee drinking on blood pressure. A meta-analysis of controlled clinical trials. Hypertension 33:647–652CrossRefPubMed
16.
go back to reference Noordzij M, Uiterwaal CS, Arends LR, Kok FJ, Grobbee DE, Geleijnse JM (2005) Blood pressure response to chronic intake of coffee and caffeine: a meta-analysis of randomized controlled trials. J Hypertens 23:921–928CrossRefPubMed Noordzij M, Uiterwaal CS, Arends LR, Kok FJ, Grobbee DE, Geleijnse JM (2005) Blood pressure response to chronic intake of coffee and caffeine: a meta-analysis of randomized controlled trials. J Hypertens 23:921–928CrossRefPubMed
17.
go back to reference Nurminen M-L, Niittyenen L, Korpela R, Vapaatalo V (1999) Coffee, caffeine and blood pressure: a critical review. Eur J Clin Nutr 53:831–839CrossRef Nurminen M-L, Niittyenen L, Korpela R, Vapaatalo V (1999) Coffee, caffeine and blood pressure: a critical review. Eur J Clin Nutr 53:831–839CrossRef
18.
go back to reference Mesas AE, Leon-Muñoz LM, Rodriguez-Artalejo F, Lopez-Garcia E (2011) The effect of coffee on blood pressure and cardiovascular disease in hypertensive individuals: a systematic review and meta-analysis. Am J Clin Nutr 94:1113–1126CrossRefPubMed Mesas AE, Leon-Muñoz LM, Rodriguez-Artalejo F, Lopez-Garcia E (2011) The effect of coffee on blood pressure and cardiovascular disease in hypertensive individuals: a systematic review and meta-analysis. Am J Clin Nutr 94:1113–1126CrossRefPubMed
19.
go back to reference Steffen M, Kuhle C, Hensrud D, Erwin PJ, Murad MH (2012) The effect of coffee consumption on blood pressure and the development of hypertension: a systematic review and meta-analysis. J Hypertens 30:2245–2254CrossRefPubMed Steffen M, Kuhle C, Hensrud D, Erwin PJ, Murad MH (2012) The effect of coffee consumption on blood pressure and the development of hypertension: a systematic review and meta-analysis. J Hypertens 30:2245–2254CrossRefPubMed
20.
go back to reference Zhang Z, Hu G, Caballero B, Apple L, Chen L (2011) Habitual coffee consumption and risk of hypertension: a systematic review and meta-analysis of prospective observational studies. Am J Clin Nutr 93:1212–1219CrossRefPubMed Zhang Z, Hu G, Caballero B, Apple L, Chen L (2011) Habitual coffee consumption and risk of hypertension: a systematic review and meta-analysis of prospective observational studies. Am J Clin Nutr 93:1212–1219CrossRefPubMed
21.
go back to reference Karatzis E, Papaioannou TG, Aznaouridis K, Karatzi K, Stamatelopoulos K, Zampelas A, Papamichael C, Lekakis J, Mavrikakis M (2005) Acute effects of caffeine on blood pressure and wave reflections in healthy subjects: should we consider monitoring central blood pressure? Int J Cardiol 98:425–430CrossRefPubMed Karatzis E, Papaioannou TG, Aznaouridis K, Karatzi K, Stamatelopoulos K, Zampelas A, Papamichael C, Lekakis J, Mavrikakis M (2005) Acute effects of caffeine on blood pressure and wave reflections in healthy subjects: should we consider monitoring central blood pressure? Int J Cardiol 98:425–430CrossRefPubMed
22.
go back to reference Papamichael CM, Aznaouridis KA, Karatzis EN, Karatzi KN, Stamatelopoulos KS, Vamvakou G, Lekakis JP, Mavrikakis ME (2005) Effect of coffee on endothelial function in healthy subjects: the role of caffeine. Clin Sci 109:55–60CrossRefPubMed Papamichael CM, Aznaouridis KA, Karatzis EN, Karatzi KN, Stamatelopoulos KS, Vamvakou G, Lekakis JP, Mavrikakis ME (2005) Effect of coffee on endothelial function in healthy subjects: the role of caffeine. Clin Sci 109:55–60CrossRefPubMed
23.
go back to reference Buscemi S, Verga S, Batsis JA, Donatelli M, Tranchina MR, Belmonte S, Mattina A, Re A, Cerasola G (2010) Acute effects of coffee on endothelial function in healthy subjects. Eur J Clin Nutr 64:483–489CrossRefPubMed Buscemi S, Verga S, Batsis JA, Donatelli M, Tranchina MR, Belmonte S, Mattina A, Re A, Cerasola G (2010) Acute effects of coffee on endothelial function in healthy subjects. Eur J Clin Nutr 64:483–489CrossRefPubMed
24.
go back to reference Ochiai R, Sugiura Y, Otsuka K, Katsuragi Y, Hashiguchi T (2014) Coffee polyphenols improve peripheral endothelial function after glucose loading in healthy male adults. Nutr Res 34:155–159CrossRefPubMed Ochiai R, Sugiura Y, Otsuka K, Katsuragi Y, Hashiguchi T (2014) Coffee polyphenols improve peripheral endothelial function after glucose loading in healthy male adults. Nutr Res 34:155–159CrossRefPubMed
25.
go back to reference Ludwig IA, Clifford MN, Lean ME, Ashihara H, Crozier A (2014) Coffee: biochemistry and potential impact on health. Food Funct 5:1695–1717CrossRefPubMed Ludwig IA, Clifford MN, Lean ME, Ashihara H, Crozier A (2014) Coffee: biochemistry and potential impact on health. Food Funct 5:1695–1717CrossRefPubMed
26.
go back to reference Cho AS, Jeon SM, Kim MJ, Yeo J, Seo KI, Choi MS, Lee MK (2010) Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induce-obese mice. Food Chem Toxicol 48:937–943CrossRefPubMed Cho AS, Jeon SM, Kim MJ, Yeo J, Seo KI, Choi MS, Lee MK (2010) Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induce-obese mice. Food Chem Toxicol 48:937–943CrossRefPubMed
27.
go back to reference Vinson JA, Burnham BR, Nagendran MV (2012) Randomized, double-blind, placebo-controlled, linear dose, crossover study to evaluate the efficacy and safety of a green coffee bean extract in overweight subjects. Diabetes Metab Syndr Obes Target Ther 5:21–27CrossRef Vinson JA, Burnham BR, Nagendran MV (2012) Randomized, double-blind, placebo-controlled, linear dose, crossover study to evaluate the efficacy and safety of a green coffee bean extract in overweight subjects. Diabetes Metab Syndr Obes Target Ther 5:21–27CrossRef
28.
go back to reference Agudelo-Ochoa GM, Pulgarín-Zapata IC, Velásquez-Rodríguez CM, Duqye-Ramírez M, Naranjo-Cano M, Quintero-Ortiz MM, Lara-Guzmán OJ, Muñoz-Durango K (2016) Coffee consumption increases the antioxidant capacity of plasma and has no effect on the lipid profile or vascular function in healthy adults in a randomized controlled trial. J Nutr 146:524–531CrossRefPubMed Agudelo-Ochoa GM, Pulgarín-Zapata IC, Velásquez-Rodríguez CM, Duqye-Ramírez M, Naranjo-Cano M, Quintero-Ortiz MM, Lara-Guzmán OJ, Muñoz-Durango K (2016) Coffee consumption increases the antioxidant capacity of plasma and has no effect on the lipid profile or vascular function in healthy adults in a randomized controlled trial. J Nutr 146:524–531CrossRefPubMed
29.
go back to reference Meng S, Cao J, Feng Q, Peng J, Hu Y (2013) Roles of chlorogenic acid on regulating glucose and lipids metabolism: a review. Evid Based Complem Alt Med 2013:801457 Meng S, Cao J, Feng Q, Peng J, Hu Y (2013) Roles of chlorogenic acid on regulating glucose and lipids metabolism: a review. Evid Based Complem Alt Med 2013:801457
30.
go back to reference Kozuma K, Tsuchiya S, Kohori J, Hase T, Tokimitsu I (2005) Antihypertensive effect of green coffee bean extract on mildly hypertensive subjects. Hypertens Res 28:711–718CrossRefPubMed Kozuma K, Tsuchiya S, Kohori J, Hase T, Tokimitsu I (2005) Antihypertensive effect of green coffee bean extract on mildly hypertensive subjects. Hypertens Res 28:711–718CrossRefPubMed
31.
go back to reference Watanabe T, Arai Y, Mitsui Y, Kusaura T, Okawa W, Kajihara Y, Saito I (2006) The blood pressure-lowering effect and safety of chlorogenic acid from green coffee bean extract in essential hypertension. Clin Exper Hypert 28:439–449CrossRef Watanabe T, Arai Y, Mitsui Y, Kusaura T, Okawa W, Kajihara Y, Saito I (2006) The blood pressure-lowering effect and safety of chlorogenic acid from green coffee bean extract in essential hypertension. Clin Exper Hypert 28:439–449CrossRef
32.
go back to reference Revuelta-Iniesta R, Al-Dujaili EAS (2014) Consumption of green coffee reduces blood pressure and body composition by influencing 11β-HSD1 enzyme activity in healthy individuals: a pilot crossover study using green and black coffee. Bio Med Res Int 482704 Revuelta-Iniesta R, Al-Dujaili EAS (2014) Consumption of green coffee reduces blood pressure and body composition by influencing 11β-HSD1 enzyme activity in healthy individuals: a pilot crossover study using green and black coffee. Bio Med Res Int 482704
33.
go back to reference Ochiai R, Jokura H, Suzuki A, Tokimitsu I, Ohishi M, Komai N, Rakugi H, Ogihara T (2004) Green coffee bean extract improves human vasoreactivity. Hypertens Res 27:731–737CrossRefPubMed Ochiai R, Jokura H, Suzuki A, Tokimitsu I, Ohishi M, Komai N, Rakugi H, Ogihara T (2004) Green coffee bean extract improves human vasoreactivity. Hypertens Res 27:731–737CrossRefPubMed
34.
go back to reference Ward NC, Hodgson JM, Woodman RJ, Zimmermann D, Poquet L, Leveques A, Actis-Goretta L, Puddey IB, Croft KD (2016) Acute effects of chlorogenic acids on endothelial function and blood pressure in healthy men and women. Food Funct 7:2197–2203CrossRefPubMed Ward NC, Hodgson JM, Woodman RJ, Zimmermann D, Poquet L, Leveques A, Actis-Goretta L, Puddey IB, Croft KD (2016) Acute effects of chlorogenic acids on endothelial function and blood pressure in healthy men and women. Food Funct 7:2197–2203CrossRefPubMed
35.
go back to reference Sarriá B, Martínez-López S, Mateos R, Bravo L (2016) Long-term consumption of a green/roasted coffee blend positively affects glucose and insulin resistance in humans. Food Res Int 89:1023–1028CrossRef Sarriá B, Martínez-López S, Mateos R, Bravo L (2016) Long-term consumption of a green/roasted coffee blend positively affects glucose and insulin resistance in humans. Food Res Int 89:1023–1028CrossRef
36.
go back to reference Martinez-Lopez S, Sarria B, Baeza G, Mateos R, Bravo-Clemente L (2014) Theobromine, caffeine, and theophylline metabolites in human plasma and urine after consumption of soluble cocoa products with different methylxanthine contents. Food Res Int 63:446–455CrossRef Martinez-Lopez S, Sarria B, Baeza G, Mateos R, Bravo-Clemente L (2014) Theobromine, caffeine, and theophylline metabolites in human plasma and urine after consumption of soluble cocoa products with different methylxanthine contents. Food Res Int 63:446–455CrossRef
37.
go back to reference Olthof MR, Hollman PC, Zock PL, Katan MK (2001) Consumption of high doses of chlorogenic acid, present in coffee, or of black tea increases plasma total homocysteine concentrations in humans. Am J Clin Nutr 73:532–538CrossRef Olthof MR, Hollman PC, Zock PL, Katan MK (2001) Consumption of high doses of chlorogenic acid, present in coffee, or of black tea increases plasma total homocysteine concentrations in humans. Am J Clin Nutr 73:532–538CrossRef
38.
go back to reference Kempf K, Kolb H, Gärtner B, Bytof G, Stiebitz H, Lantz I, Lang R, Hofmann T, Martin S (2015) Cardiometabolic effects of two coffee blends differing in content form major constituents in overweight adults: a randomized controlled trial. Eur J Nutr 54:845–854CrossRefPubMed Kempf K, Kolb H, Gärtner B, Bytof G, Stiebitz H, Lantz I, Lang R, Hofmann T, Martin S (2015) Cardiometabolic effects of two coffee blends differing in content form major constituents in overweight adults: a randomized controlled trial. Eur J Nutr 54:845–854CrossRefPubMed
39.
go back to reference Hoelzl C, Knasmüller S, Wagner KH, Elbling L, Huber W, Kager N, Ferk F, Ehrlich V, Nersesyan A, Neubauer O et al (2010) Instant coffee with high chlorogenic acid levels protects humans against oxidative damage of macromolecules. Mol Nutr Food Res 54:1722–1733CrossRefPubMed Hoelzl C, Knasmüller S, Wagner KH, Elbling L, Huber W, Kager N, Ferk F, Ehrlich V, Nersesyan A, Neubauer O et al (2010) Instant coffee with high chlorogenic acid levels protects humans against oxidative damage of macromolecules. Mol Nutr Food Res 54:1722–1733CrossRefPubMed
40.
go back to reference Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio Med 26:1231–1237CrossRef Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio Med 26:1231–1237CrossRef
41.
go back to reference Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Prior RL (2002) High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J Agric Food Chem 50:4437–4444CrossRef Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Prior RL (2002) High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J Agric Food Chem 50:4437–4444CrossRef
42.
go back to reference Pulido R, Bravo L, Saura-Calixto F (2000) Antioxidant activity of dietary polyphenols as determined by a modified FRAP assay. J Agric Food Chem 48:3396–3402CrossRef Pulido R, Bravo L, Saura-Calixto F (2000) Antioxidant activity of dietary polyphenols as determined by a modified FRAP assay. J Agric Food Chem 48:3396–3402CrossRef
43.
go back to reference Mateos R, Lecumberri E, Ramos S, Goya L, Bravo L (2005) Determination of malondialdehyde (MDA) by high-performance liquid chromatography in serum and liver as a biomarker for oxidative stress. Application to a rat model for hypercholesterolemia and evaluation of the effect of diets rich in phenolic antioxidants from fruits. J Chrom B 827:76–82CrossRef Mateos R, Lecumberri E, Ramos S, Goya L, Bravo L (2005) Determination of malondialdehyde (MDA) by high-performance liquid chromatography in serum and liver as a biomarker for oxidative stress. Application to a rat model for hypercholesterolemia and evaluation of the effect of diets rich in phenolic antioxidants from fruits. J Chrom B 827:76–82CrossRef
44.
go back to reference Ritcher S, Wehr NB, Stadtman ER, Levine RL (2002) Assessment of skin carbonyl content as a noninvasive measure of biological age. Arch Biochem Biophys 397:430–432CrossRef Ritcher S, Wehr NB, Stadtman ER, Levine RL (2002) Assessment of skin carbonyl content as a noninvasive measure of biological age. Arch Biochem Biophys 397:430–432CrossRef
45.
go back to reference Moreiras O, Carbajal A, Cabrera L, Cuadrado C (2016) Ingestas diarias recomendadas de energía y nutrientes para la población española. Tablas de Composición de Alimentos. Ed. Pirámide (Grupo Anaya, SA), 18th edn. Madrid Moreiras O, Carbajal A, Cabrera L, Cuadrado C (2016) Ingestas diarias recomendadas de energía y nutrientes para la población española. Tablas de Composición de Alimentos. Ed. Pirámide (Grupo Anaya, SA), 18th edn. Madrid
46.
go back to reference FAO/WHO/UNU (1985) Expert Consultation Report. Energy and Protein Requirements. Technical Report Series 724. WHO, Geneva FAO/WHO/UNU (1985) Expert Consultation Report. Energy and Protein Requirements. Technical Report Series 724. WHO, Geneva
47.
go back to reference Greenberg JA, Boozer CN, Geliebter A (2006) Coffee, diabetes, and weight control. Am J Clin Nutr 84:682–693CrossRefPubMed Greenberg JA, Boozer CN, Geliebter A (2006) Coffee, diabetes, and weight control. Am J Clin Nutr 84:682–693CrossRefPubMed
48.
go back to reference Riksen NP, Rongen GA, Smits P (2009) Acute and long-term cardiovascular effects of coffee: implications for coronary heart disease. Pharmacol Ther 121:185–191CrossRefPubMed Riksen NP, Rongen GA, Smits P (2009) Acute and long-term cardiovascular effects of coffee: implications for coronary heart disease. Pharmacol Ther 121:185–191CrossRefPubMed
49.
go back to reference Mubarak A, Bondonno CP, Liu AH, Considine MJ, Rich L, Mas E, Croft KD, Hodgson JM (2012) Acute effects of chlorogenic acid on nitric oxide status, endothelial function, and blood pressure in healthy volunteers: a randomized trial. J Agric Food Chem 60:9130–9136CrossRefPubMed Mubarak A, Bondonno CP, Liu AH, Considine MJ, Rich L, Mas E, Croft KD, Hodgson JM (2012) Acute effects of chlorogenic acid on nitric oxide status, endothelial function, and blood pressure in healthy volunteers: a randomized trial. J Agric Food Chem 60:9130–9136CrossRefPubMed
50.
go back to reference Kempf K, Herder C, Erlund I, Kolb H, Martin S, Cartensen M, Koenig W, Sundvall J, Bidel S, Kuha S, Tuomilehto J (2010) Effects of coffee consumption on subclinical inflammation and other risk factors for type 2 diabetes: a clinical trial. Am J Clin Nutr 91:950–957CrossRefPubMed Kempf K, Herder C, Erlund I, Kolb H, Martin S, Cartensen M, Koenig W, Sundvall J, Bidel S, Kuha S, Tuomilehto J (2010) Effects of coffee consumption on subclinical inflammation and other risk factors for type 2 diabetes: a clinical trial. Am J Clin Nutr 91:950–957CrossRefPubMed
51.
go back to reference Koh KK, Quon MJ, Han SH, Chung W-J, Ahn JY, Seo Y-H, Kang MH, Ahn TH, Choi IS, Shin EK (2004) Additive beneficial effects of losartan combined with simvastatin in the treatment of hypercholesterolemic, hypertensive patients. Circulation 110:3687–3692CrossRefPubMed Koh KK, Quon MJ, Han SH, Chung W-J, Ahn JY, Seo Y-H, Kang MH, Ahn TH, Choi IS, Shin EK (2004) Additive beneficial effects of losartan combined with simvastatin in the treatment of hypercholesterolemic, hypertensive patients. Circulation 110:3687–3692CrossRefPubMed
52.
go back to reference Panahi Y, Hosseini MS, Khalili N, Naimi E, Simental.Mendia LE, Majeed M, Sahebkar A (2016) Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: a post-hoc analysis of a randomized controlled trial. Biomed Pharmacother 82:578–582CrossRefPubMed Panahi Y, Hosseini MS, Khalili N, Naimi E, Simental.Mendia LE, Majeed M, Sahebkar A (2016) Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: a post-hoc analysis of a randomized controlled trial. Biomed Pharmacother 82:578–582CrossRefPubMed
53.
go back to reference Correa TAF, Rogero MM, Mioto BM, Tarasoutchi D, Tuda VL, Cesar LAM, Torres EAFS. (2013) Paper-filtered coffee increases cholesterol and inflammation biomarkers independent of roasting degree: a clinical trial. Nutrition 29:977–981CrossRefPubMed Correa TAF, Rogero MM, Mioto BM, Tarasoutchi D, Tuda VL, Cesar LAM, Torres EAFS. (2013) Paper-filtered coffee increases cholesterol and inflammation biomarkers independent of roasting degree: a clinical trial. Nutrition 29:977–981CrossRefPubMed
54.
go back to reference Therkelsen SP, Hetland G, Lyberg T, Lygren I, Johnson E (2016) Cytokine levels after consumption of a medicinal Agaricus blazei Murill-based mushroom extract, AndoSanTM, in patients with Chron’s disease and ulcerative colitis in a randomized single-blinded placebo-controlled study. Human Immunol 84:323–331 Therkelsen SP, Hetland G, Lyberg T, Lygren I, Johnson E (2016) Cytokine levels after consumption of a medicinal Agaricus blazei Murill-based mushroom extract, AndoSanTM, in patients with Chron’s disease and ulcerative colitis in a randomized single-blinded placebo-controlled study. Human Immunol 84:323–331
55.
go back to reference Chang WC, Chen CH, Lee MF, Chang T, Yu YM (2010) Chlorogenic acid attenuates adhesion molecules up-regulation in IL-1β-treated endothelial cells. Eur J Nutr 49:267–275CrossRefPubMed Chang WC, Chen CH, Lee MF, Chang T, Yu YM (2010) Chlorogenic acid attenuates adhesion molecules up-regulation in IL-1β-treated endothelial cells. Eur J Nutr 49:267–275CrossRefPubMed
56.
go back to reference Hwang SJ, Kim Y-W, Park Y, Lee H-J, Kim K-W (2014) Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RWA 264.7 cells. Inflamm Res 63:81–90CrossRef Hwang SJ, Kim Y-W, Park Y, Lee H-J, Kim K-W (2014) Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RWA 264.7 cells. Inflamm Res 63:81–90CrossRef
57.
go back to reference Lee E-S, Park S-H, Kim MS, Han S-Y, Kim H-S, Kang Y-H (2012) Caffeic acid disturbs monocyte adhesion onto cultured endothelial cells stimulated by adipokine resistin. J Agric Food Chem 60:2730–2739CrossRefPubMed Lee E-S, Park S-H, Kim MS, Han S-Y, Kim H-S, Kang Y-H (2012) Caffeic acid disturbs monocyte adhesion onto cultured endothelial cells stimulated by adipokine resistin. J Agric Food Chem 60:2730–2739CrossRefPubMed
58.
go back to reference Ma Z-C, Hong Q, Wang Y-G, Tan H-L, Xiao C-R, Liang Q-D, Cai S-H, Gao Y (2010) Ferulic acid attenuates adhesion molecule expression in gamma-radiated human umbilical vascular endothelial cells. Biol Pharm Bull 33:752–758CrossRefPubMed Ma Z-C, Hong Q, Wang Y-G, Tan H-L, Xiao C-R, Liang Q-D, Cai S-H, Gao Y (2010) Ferulic acid attenuates adhesion molecule expression in gamma-radiated human umbilical vascular endothelial cells. Biol Pharm Bull 33:752–758CrossRefPubMed
59.
go back to reference Pellegrini N, Serafini M, Colombi B, Del Rio D, Salvatore S, Bianchi M, Brighenti F (2003) Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J Nutr 133:2812–2819CrossRefPubMed Pellegrini N, Serafini M, Colombi B, Del Rio D, Salvatore S, Bianchi M, Brighenti F (2003) Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J Nutr 133:2812–2819CrossRefPubMed
60.
go back to reference Svilaas A, Sakhi AK, Andersen LF, Svilaas T, Ström EC, Jacobs DR, Ose L, Bloomhoff R (2004) Intakes of antioxidants in coffee, wine, and vegetables are correlated with plasma carotenoids in humans. J Nutr 134:562–567CrossRefPubMed Svilaas A, Sakhi AK, Andersen LF, Svilaas T, Ström EC, Jacobs DR, Ose L, Bloomhoff R (2004) Intakes of antioxidants in coffee, wine, and vegetables are correlated with plasma carotenoids in humans. J Nutr 134:562–567CrossRefPubMed
61.
go back to reference Baeza G, Amigo-Benavent M, Sarria B, Goya L, Mateos R, Bravo L (2014) Green coffee hydroxycinnamic acids but not caffeine protect human HepG2 cells against oxidative stress. Food Res Int 62:1038–1046CrossRef Baeza G, Amigo-Benavent M, Sarria B, Goya L, Mateos R, Bravo L (2014) Green coffee hydroxycinnamic acids but not caffeine protect human HepG2 cells against oxidative stress. Food Res Int 62:1038–1046CrossRef
62.
go back to reference Gómez-Juaristi M, Martínez-López S, Sarria B, Bravo L, Mateos R (2018) Bioavailability of hydroxycinnamates in an instant green/roasted coffee blend in humans. Identification of novel colonic metabolites. Food Funct 9:313–334CrossRef Gómez-Juaristi M, Martínez-López S, Sarria B, Bravo L, Mateos R (2018) Bioavailability of hydroxycinnamates in an instant green/roasted coffee blend in humans. Identification of novel colonic metabolites. Food Funct 9:313–334CrossRef
Metadata
Title
Moderate consumption of a soluble green/roasted coffee rich in caffeoylquinic acids reduces cardiovascular risk markers: results from a randomized, cross-over, controlled trial in healthy and hypercholesterolemic subjects
Authors
Sara Martínez-López
Beatriz Sarriá
R. Mateos
Laura Bravo-Clemente
Publication date
01-03-2019
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nutrition / Issue 2/2019
Print ISSN: 1436-6207
Electronic ISSN: 1436-6215
DOI
https://doi.org/10.1007/s00394-018-1726-x

Other articles of this Issue 2/2019

European Journal of Nutrition 2/2019 Go to the issue