Skip to main content
Top
Published in: European Journal of Nutrition 7/2018

01-10-2018 | Original Contribution

Erythritol reduces small intestinal glucose absorption, increases muscle glucose uptake, improves glucose metabolic enzymes activities and increases expression of Glut-4 and IRS-1 in type 2 diabetic rats

Authors: Chika Ifeanyi Chukwuma, Ramgopal Mopuri, Savania Nagiah, Anil Amichund Chuturgoon, Md. Shahidul Islam

Published in: European Journal of Nutrition | Issue 7/2018

Login to get access

Abstract

Purpose

Studies have reported that erythritol, a low or non-glycemic sugar alcohol possesses anti-hyperglycemic and anti-diabetic potentials but the underlying mode of actions is not clear. This study investigated the underlying mode of actions behind the anti-hyperglycemic and anti-diabetic potentials of erythritol using different experimental models (experiment 1, 2 and 3).

Methods

Experiment 1 examined the effects of increasing concentrations (2.5–20%) of erythritol on glucose absorption and uptake in isolated rat jejunum and psoas muscle, respectively. Experiments 2 and 3 examined the effects of a single oral dose of erythritol (1 g/kg bw) on intestinal glucose absorption, gastric emptying and postprandial blood glucose increase, glucose tolerance, serum insulin level, muscle/liver hexokinase and liver glucose-6 phosphatase activities, liver and muscle glycogen contents and mRNA and protein expression of muscle Glut-4 and IRS-1 in normal and type 2 diabetic animals.

Results

Experiment 1 revealed that erythritol dose dependently enhanced muscle glucose ex vivo. Experiment 2 demonstrated that erythritol feeding delayed gastric emptying and reduced small intestinal glucose absorption as well as postprandial blood glucose rise, especially in diabetic animals. Experiment 3 showed that erythritol feeding improved glucose tolerance, muscle/liver hexokinase and liver glucose-6 phosphatase activities, glycogen storage and also modulated expression of muscle Glut-4 and IRS-1 in diabetic animals.

Conclusion

Data suggest that erythritol may exert anti-hyperglycemic effects not only via reducing small intestinal glucose absorption, but also by increasing muscle glucose uptake, improving glucose metabolic enzymes activity and modulating muscle Glut-4 and IRS-1 mRNA and protein expression. Hence, erythritol may be a useful dietary supplement for managing hyperglycemia, particularly for T2D.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pratley RE (2013) The early treatment of type 2 diabetes. Am J Med 126:S2–S9CrossRef Pratley RE (2013) The early treatment of type 2 diabetes. Am J Med 126:S2–S9CrossRef
2.
go back to reference International Diabetes Federation (2015) IDF Diabetes Atlas, 7th edn International Diabetes Federation (2015) IDF Diabetes Atlas, 7th edn
3.
go back to reference Bahrami J, Gerstein H (2016) The prevalence of undiagnosed type 2 diabetes on the General Medicine Ward. Can J Diabetes 40:S49–S50CrossRef Bahrami J, Gerstein H (2016) The prevalence of undiagnosed type 2 diabetes on the General Medicine Ward. Can J Diabetes 40:S49–S50CrossRef
4.
go back to reference Pratley R, Weyer C (2001) The role of impaired early insulin secretion in the pathogenesis of type II diabetes mellitus. Diabetologia 44:929–945CrossRef Pratley R, Weyer C (2001) The role of impaired early insulin secretion in the pathogenesis of type II diabetes mellitus. Diabetologia 44:929–945CrossRef
5.
go back to reference Kahn SE (2003) The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia 43:3–19CrossRef Kahn SE (2003) The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia 43:3–19CrossRef
6.
go back to reference Thorburn AW, Storlien LH, Jenkins AB, Khouri S, Kraegen EW (1989) Fructose-induced in vivo insulin resistance and elevated plasma triglyceride levels in rats. Am J Clin Nutr 49:1155–1163CrossRef Thorburn AW, Storlien LH, Jenkins AB, Khouri S, Kraegen EW (1989) Fructose-induced in vivo insulin resistance and elevated plasma triglyceride levels in rats. Am J Clin Nutr 49:1155–1163CrossRef
7.
go back to reference Elliott SS, Keim NL, Stern JS, Teff K, Havel PJ (2002) Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr 76:911–922CrossRef Elliott SS, Keim NL, Stern JS, Teff K, Havel PJ (2002) Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr 76:911–922CrossRef
8.
go back to reference Astrup A, Raben A, Vasilaras TH, Moller AC (2002) Sucrose in soft drinks is fattening: a randomized 10 week study in overweight subjects. Am J Clin Nutr 7:405 Astrup A, Raben A, Vasilaras TH, Moller AC (2002) Sucrose in soft drinks is fattening: a randomized 10 week study in overweight subjects. Am J Clin Nutr 7:405
9.
go back to reference Hu FB (2003) Sedentary lifestyle and risk of obesity and type 2 diabetes. Lipids 38:103–108CrossRef Hu FB (2003) Sedentary lifestyle and risk of obesity and type 2 diabetes. Lipids 38:103–108CrossRef
10.
go back to reference Amod A, Ascott-Evans BH, Berg GI et al (2012) The 2012 Society for Endocrinology, Metabolism and Diabetes of South Africa guideline for the management of type 2 diabetes. JEMDSA 17:1–95 Amod A, Ascott-Evans BH, Berg GI et al (2012) The 2012 Society for Endocrinology, Metabolism and Diabetes of South Africa guideline for the management of type 2 diabetes. JEMDSA 17:1–95
11.
go back to reference Livesey G (2003) Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties. Nutr Res Rev 16:163–191CrossRef Livesey G (2003) Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties. Nutr Res Rev 16:163–191CrossRef
12.
go back to reference Fitch C, Keim KS (2012) Position of the Academy of Nutrition and Dietetics: use of nutritive and non nutritive sweeteners. J Acad Nutr Diet 112:739–758CrossRef Fitch C, Keim KS (2012) Position of the Academy of Nutrition and Dietetics: use of nutritive and non nutritive sweeteners. J Acad Nutr Diet 112:739–758CrossRef
13.
go back to reference O’Donnell K, Kearsley MW (2012) Sweeteners and sugar alternatives in food technology, 2nd edn. Wiley, UKCrossRef O’Donnell K, Kearsley MW (2012) Sweeteners and sugar alternatives in food technology, 2nd edn. Wiley, UKCrossRef
14.
go back to reference Bornet FRJ, Blayo A, Dauchy F, Slama G (1996) Plasma and urine kinetics of erythritol after oral ingestion by healthy humans. Regul Toxicol Pharmaco 24:S280–S286CrossRef Bornet FRJ, Blayo A, Dauchy F, Slama G (1996) Plasma and urine kinetics of erythritol after oral ingestion by healthy humans. Regul Toxicol Pharmaco 24:S280–S286CrossRef
15.
go back to reference Yokozawa T, Kim HY, Cho EJ (2002) Erythritol attenuates the diabetic oxidative stress through modulating glucose metabolism and lipid peroxidation in streptozotocin-induced diabetic rats. J Agric Food Chem 50:5485–5489CrossRef Yokozawa T, Kim HY, Cho EJ (2002) Erythritol attenuates the diabetic oxidative stress through modulating glucose metabolism and lipid peroxidation in streptozotocin-induced diabetic rats. J Agric Food Chem 50:5485–5489CrossRef
16.
go back to reference Ishikawa M, Miyashita M, Kawashima Y et al (1996) Effects of oral administration of erythritol on patients with diabetes. Regul Toxicol Pharmacol 24:S303–S308CrossRef Ishikawa M, Miyashita M, Kawashima Y et al (1996) Effects of oral administration of erythritol on patients with diabetes. Regul Toxicol Pharmacol 24:S303–S308CrossRef
17.
go back to reference Flint N, Hamburg NM, Holbrook M et al (2014) Effects of erythritol on endothelial function in patients with type 2 diabetes mellitus: a pilot study. Acta Diabetol 51:513–516PubMed Flint N, Hamburg NM, Holbrook M et al (2014) Effects of erythritol on endothelial function in patients with type 2 diabetes mellitus: a pilot study. Acta Diabetol 51:513–516PubMed
18.
go back to reference Woelnerhanssen BK, Cajacob L, Keller N et al (2016) Gut hormone secretion, gastric emptying and glycemic responses to erythritol and xylitol in lean and obese subjects. Am J Physiol Endocrinol Metab 310:E1053–E1061CrossRef Woelnerhanssen BK, Cajacob L, Keller N et al (2016) Gut hormone secretion, gastric emptying and glycemic responses to erythritol and xylitol in lean and obese subjects. Am J Physiol Endocrinol Metab 310:E1053–E1061CrossRef
19.
go back to reference Chukwuma CI, Ibrahim MA, Islam MS (2016) Myo-inositol inhibits intestinal glucose absorption and promotes muscle glucose uptake: a dual approach study. J Physiol Biochem 72:791–801CrossRef Chukwuma CI, Ibrahim MA, Islam MS (2016) Myo-inositol inhibits intestinal glucose absorption and promotes muscle glucose uptake: a dual approach study. J Physiol Biochem 72:791–801CrossRef
20.
go back to reference Chukwuma CI, Islam MS (2017) Sorbitol increases muscle glucose uptake ex vivo and inhibits intestinal glucose absorption ex vivo and in normal and type 2 diabetic rats. Appl Physiol Nutr Metab 42:377–383CrossRef Chukwuma CI, Islam MS (2017) Sorbitol increases muscle glucose uptake ex vivo and inhibits intestinal glucose absorption ex vivo and in normal and type 2 diabetic rats. Appl Physiol Nutr Metab 42:377–383CrossRef
21.
go back to reference Wilson RD, Islam MS (2012) Fructose-fed streptozotocin injected rat: an alternative model for type 2 diabetes. Pharmacol Rep 64:129–139CrossRef Wilson RD, Islam MS (2012) Fructose-fed streptozotocin injected rat: an alternative model for type 2 diabetes. Pharmacol Rep 64:129–139CrossRef
22.
go back to reference Storey D, Lee A, Bornet F, Brouns F (2007) Gastrointestinal tolerance of erythritol and xylitol ingested in a liquid. Eur J Clin Nutr 61:349–354CrossRef Storey D, Lee A, Bornet F, Brouns F (2007) Gastrointestinal tolerance of erythritol and xylitol ingested in a liquid. Eur J Clin Nutr 61:349–354CrossRef
23.
go back to reference Ngubane PS, Masola B, Musabayane CT (2011) The effects of Syzygium aromaticum derived oleanolic acid on glycogenic enzymes in streptozotocin induced-diabetic rats. Ren Fail 33:434–439CrossRef Ngubane PS, Masola B, Musabayane CT (2011) The effects of Syzygium aromaticum derived oleanolic acid on glycogenic enzymes in streptozotocin induced-diabetic rats. Ren Fail 33:434–439CrossRef
24.
go back to reference Lo S, Russel JC, Taylor AW (1970) Determination of glycogen in small tissue samples. J Appl Physiol 28:234–236CrossRef Lo S, Russel JC, Taylor AW (1970) Determination of glycogen in small tissue samples. J Appl Physiol 28:234–236CrossRef
28.
go back to reference Araujo EP, Amaral ME, Filiputti E et al (2004) Restoration of insulin secretion in pancreatic islets of protein-deficient rats by reduced expression of insulin receptor substrate (IRS)-1 and IRS-2. J Endocrinol 181:25–38CrossRef Araujo EP, Amaral ME, Filiputti E et al (2004) Restoration of insulin secretion in pancreatic islets of protein-deficient rats by reduced expression of insulin receptor substrate (IRS)-1 and IRS-2. J Endocrinol 181:25–38CrossRef
29.
go back to reference Im SS, Kwon SK, Kang SY et al (2006) Regulation of GLUT4 gene expression by SREBP-1c in adipocytes. Biochem J 399:131–139CrossRef Im SS, Kwon SK, Kang SY et al (2006) Regulation of GLUT4 gene expression by SREBP-1c in adipocytes. Biochem J 399:131–139CrossRef
30.
go back to reference Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007CrossRef Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007CrossRef
31.
go back to reference Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108CrossRef Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108CrossRef
32.
go back to reference Rider AK, Schedl HP, Nokes G, Shining S (1967) Small intestinal glucose transport. Proximal-distal kinetic gradients. J Gen Physiol 50:1173–1182CrossRef Rider AK, Schedl HP, Nokes G, Shining S (1967) Small intestinal glucose transport. Proximal-distal kinetic gradients. J Gen Physiol 50:1173–1182CrossRef
33.
go back to reference Riesenfeld G, Sklan D, Bar A, Eisner U, Hurwitz S (1980) Glucose absorption and starch digestion in the intestine of the chicken. J Nutr 110:117–121CrossRef Riesenfeld G, Sklan D, Bar A, Eisner U, Hurwitz S (1980) Glucose absorption and starch digestion in the intestine of the chicken. J Nutr 110:117–121CrossRef
34.
go back to reference Salminen E, Salminen S, Porkka L, Koivistoinen P (1984) The effects of xylitol on gastric emptying and secretion of gastric inhibitory polypeptide in the rat. J Nutr 114:2201–2203CrossRef Salminen E, Salminen S, Porkka L, Koivistoinen P (1984) The effects of xylitol on gastric emptying and secretion of gastric inhibitory polypeptide in the rat. J Nutr 114:2201–2203CrossRef
35.
go back to reference Aronoff SL, Berkowitz K, Shreiner B, Want L (2004) Glucose metabolism and regulation: beyond insulin and glucagon. Diabetes Spectr 17:183–190CrossRef Aronoff SL, Berkowitz K, Shreiner B, Want L (2004) Glucose metabolism and regulation: beyond insulin and glucagon. Diabetes Spectr 17:183–190CrossRef
36.
go back to reference Horowitz M, Wishart JM, Jones KL, Hebbard GS (1996) Gastric emptying in diabetes: an overview. Diabet Med 13:S16–S22PubMed Horowitz M, Wishart JM, Jones KL, Hebbard GS (1996) Gastric emptying in diabetes: an overview. Diabet Med 13:S16–S22PubMed
37.
go back to reference Phillips WT, Schwartz JG, McMahan CA (1991) Rapid gastric emptying in patients with early non-insulin-dependent diabetes mellitus. N Engl J Med 324:130–131CrossRef Phillips WT, Schwartz JG, McMahan CA (1991) Rapid gastric emptying in patients with early non-insulin-dependent diabetes mellitus. N Engl J Med 324:130–131CrossRef
38.
go back to reference Ranganath L, Norris F, Morgan L, Wright J, Marks V (1998) Delayed gastric emptying occurs following acarbose administration and is a further mechanism for its anti-hyperglycaemic effect. Diabet Med 15:120–124CrossRef Ranganath L, Norris F, Morgan L, Wright J, Marks V (1998) Delayed gastric emptying occurs following acarbose administration and is a further mechanism for its anti-hyperglycaemic effect. Diabet Med 15:120–124CrossRef
39.
go back to reference Chukwuma CI, Islam MS (2015) Effects of xylitol on carbohydrate digesting enzymes activity, intestinal glucose absorption and muscle glucose uptake: a multi-mode study. Food Funct 6:955–962CrossRef Chukwuma CI, Islam MS (2015) Effects of xylitol on carbohydrate digesting enzymes activity, intestinal glucose absorption and muscle glucose uptake: a multi-mode study. Food Funct 6:955–962CrossRef
40.
41.
go back to reference González-Sánchez JL, Serrano-Ríos M (2007) Molecular basis of insulin action. Drug News Perspect 20:527–531CrossRef González-Sánchez JL, Serrano-Ríos M (2007) Molecular basis of insulin action. Drug News Perspect 20:527–531CrossRef
42.
go back to reference Wu C, Khan SA, Lange AJ (2005) Regulation of glycolysis-role of insulin. Exp Gerontol 40:894–899CrossRef Wu C, Khan SA, Lange AJ (2005) Regulation of glycolysis-role of insulin. Exp Gerontol 40:894–899CrossRef
43.
go back to reference Fröjdö S, Vidal H, Pirola L (2009) Alterations of insulin signaling in type 2 diabetes: a review of the current evidence from humans. Biochim Biophys Acta 1792:83–92CrossRef Fröjdö S, Vidal H, Pirola L (2009) Alterations of insulin signaling in type 2 diabetes: a review of the current evidence from humans. Biochim Biophys Acta 1792:83–92CrossRef
45.
go back to reference Carvalho E, Jansson PA, Nagaev I, Wenthzel AM, Smith U (2001) Insulin resistance with low cellular IRS-1 expression is also associated with low GLUT4 expression and impaired insulin-stimulated glucose transport. FASEB J 15:1101–1103PubMed Carvalho E, Jansson PA, Nagaev I, Wenthzel AM, Smith U (2001) Insulin resistance with low cellular IRS-1 expression is also associated with low GLUT4 expression and impaired insulin-stimulated glucose transport. FASEB J 15:1101–1103PubMed
46.
go back to reference Wang Y, Nishina PM, Naggert JK (2009) Degradation of IRS1 leads to impaired glucose uptake in adipose tissue of the type 2 diabetes mouse model TALLYHO/Jng. J Endocrinol 203:65–74CrossRef Wang Y, Nishina PM, Naggert JK (2009) Degradation of IRS1 leads to impaired glucose uptake in adipose tissue of the type 2 diabetes mouse model TALLYHO/Jng. J Endocrinol 203:65–74CrossRef
47.
go back to reference Gual P, Le Marchand-Brustel Y, Tanti J (2003) Positive and negative regulation of glucose uptake by hyperosmotic stress. Diabetes Metab 29:566–575CrossRef Gual P, Le Marchand-Brustel Y, Tanti J (2003) Positive and negative regulation of glucose uptake by hyperosmotic stress. Diabetes Metab 29:566–575CrossRef
48.
go back to reference Zorzano A, Camps M (1997) Glut 4 in insulin resistance. In: Gould GW (ed) Facilitative glucose transporters. R.G. Landes Company and Chapman & Hall, US and Canada, pp 137–166. https://books.google.co.za/books?id = 4fpHl_KgxHIC&pg = PA149&lpg = PA149&dq = Postranslational + modification + of + Glut + 4&source = bl&ots = Dvs0Z6HTPs&sig = 35_nRLMKXpVUDGyEK00RU2UVbqM&hl = en&sa = X&ved = 0ahUKEwi79NnynvLUAhXKLMAKHfePDsYQ6AEIRjAG#v = onepage&q = Postranslational%20modification%20of%20Glut%204&f = false. Accessed 2 July 2017 Zorzano A, Camps M (1997) Glut 4 in insulin resistance. In: Gould GW (ed) Facilitative glucose transporters. R.G. Landes Company and Chapman & Hall, US and Canada, pp 137–166. https://​books.​google.​co.​za/​books?​id = 4fpHl_KgxHIC&pg = PA149&lpg = PA149&dq = Postranslational + modification + of + Glut + 4&source = bl&ots = Dvs0Z6HTPs&sig = 35_nRLMKXpVUDGyEK00RU2UVbqM&hl = en&sa = X&ved = 0ahUKEwi79NnynvLUAhXKLMAKHfePDsYQ6AEIRjAG#v = onepage&q = Postranslational%20modification%20of%20Glut%204&f = false. Accessed 2 July 2017
49.
go back to reference Liu Z, Barrett EJ, Dalkin AC, Zwart AD, Chou JY (1994) Effect of acute diabetes on rat hepatic glucose-6-phosphatase activity and its messenger RNA level. Biochem Biophys Res Commun 205:680–686CrossRef Liu Z, Barrett EJ, Dalkin AC, Zwart AD, Chou JY (1994) Effect of acute diabetes on rat hepatic glucose-6-phosphatase activity and its messenger RNA level. Biochem Biophys Res Commun 205:680–686CrossRef
50.
go back to reference Lenzen S (2014) A fresh view of glycolysis and glucokinase regulation: history and current status. J Biol Chem 289:12189–12194CrossRef Lenzen S (2014) A fresh view of glycolysis and glucokinase regulation: history and current status. J Biol Chem 289:12189–12194CrossRef
51.
go back to reference Clore JN, Stillman J, Sugerman H (2000) Glucose-6-phosphatase flux in vitro is increased in type 2 diabetes. Diabetes 49:969–974CrossRef Clore JN, Stillman J, Sugerman H (2000) Glucose-6-phosphatase flux in vitro is increased in type 2 diabetes. Diabetes 49:969–974CrossRef
52.
go back to reference Kruszynska YT, Home PD (1988) Liver and muscle insulin sensitivity, glycogen concentration and glycogen synthase activity in a rat model of non-insulin-dependent diabetes. Diabetologia 31:304–309CrossRef Kruszynska YT, Home PD (1988) Liver and muscle insulin sensitivity, glycogen concentration and glycogen synthase activity in a rat model of non-insulin-dependent diabetes. Diabetologia 31:304–309CrossRef
Metadata
Title
Erythritol reduces small intestinal glucose absorption, increases muscle glucose uptake, improves glucose metabolic enzymes activities and increases expression of Glut-4 and IRS-1 in type 2 diabetic rats
Authors
Chika Ifeanyi Chukwuma
Ramgopal Mopuri
Savania Nagiah
Anil Amichund Chuturgoon
Md. Shahidul Islam
Publication date
01-10-2018
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nutrition / Issue 7/2018
Print ISSN: 1436-6207
Electronic ISSN: 1436-6215
DOI
https://doi.org/10.1007/s00394-017-1516-x

Other articles of this Issue 7/2018

European Journal of Nutrition 7/2018 Go to the issue