Skip to main content
Top
Published in: Child's Nervous System 2/2020

01-02-2020 | Motor Evoked Potential | Original Article

Intraoperative neurophysiology in pediatric supratentorial surgery: experience with 57 cases

Authors: Jonathan Roth, Akiva Korn, Francesco Sala, Haggai Benvenisti, Muna Jubran, Yifat Bitan-Talmor, Margaret Ekstein, Shlomi Constantini

Published in: Child's Nervous System | Issue 2/2020

Login to get access

Abstract

Purpose

Utilization of intraoperative neurophysiology (ION) to map and assess various functions during supratentorial brain tumor and epilepsy surgery is well documented and commonplace in the adult setting. The applicability has yet to be established in the pediatric age group.

Methods

All pediatric supratentorial surgery utilizing ION of the motor system, completed over a period of 10 years, was analyzed retrospectively for the following variables: preoperative and postoperative motor deficits, extent of resection, sensory-motor mappability and monitorability, location of lesion, patient age, and monitoring alarms. Intraoperative findings were correlated with antecedent symptomatology as well as short- and long-term postoperative clinical outcome. The monitoring impact on surgical course was evaluated on a per-case basis.

Results

Data were analyzed for 57 patients (ages 3–207 months (93 ± 58)). Deep lesions (in proximity to the pyramidal fibers) constituted 15.7% of the total group, superficial lesions 47.4%, lesions with both deep and superficial components 31.5%, and ventricular 5.2%. Mapping of the motor cortex was significantly more successful using the short-train technique than Penfield’s technique (84% vs. 25% of trials, respectively), particularly in younger children. The youngest age at which motor mapping was successfully achieved was 3 vs. 93 months for each method, respectively. Preoperative motor strength was not associated with monitorability. Direct cortial motor evoked potential (dcMEP) was more sensitive than transcranial (tcMEP) in predicting postoperative motor decline. dcMEP decline was not associated with tumor grade or extent of resection (EOR); however, it was associated with lesion location and more prone to decline in deep locations. ION actively affected surgical decisions in several aspects, such as altering the corticectomy location and alarming due to a MEP decline.

Conclusion

ION is applicable in the pediatric population with certain limitations, depending mainly on age. When successful, ION has a positive impact on surgical decision-making, ultimately providing an added element of safety for these patients.
Literature
1.
go back to reference Barzilai O, Lidar Z, Constantini S, Salame K, Bitan-Talmor Y, Korn A (2017) Continuous mapping of the corticospinal tracts in intramedullary spinal cord tumor surgery using an electrified ultrasonic aspirator. J Neurosurg Spine 27:161–168CrossRef Barzilai O, Lidar Z, Constantini S, Salame K, Bitan-Talmor Y, Korn A (2017) Continuous mapping of the corticospinal tracts in intramedullary spinal cord tumor surgery using an electrified ultrasonic aspirator. J Neurosurg Spine 27:161–168CrossRef
2.
go back to reference Coppola A, Tramontano V, Basaldella F, Arcaro C, Squintani G, Sala F (2016) Intra-operative neurophysiological mapping and monitoring during brain tumour surgery in children: an update. Childs Nerv Syst 32:1849–1859CrossRef Coppola A, Tramontano V, Basaldella F, Arcaro C, Squintani G, Sala F (2016) Intra-operative neurophysiological mapping and monitoring during brain tumour surgery in children: an update. Childs Nerv Syst 32:1849–1859CrossRef
3.
go back to reference Deletis V, Fernandez-Conejero I (2016) Intraoperative monitoring and mapping of the functional integrity of the brainstem. J Clin Neurol 12:262–273CrossRef Deletis V, Fernandez-Conejero I (2016) Intraoperative monitoring and mapping of the functional integrity of the brainstem. J Clin Neurol 12:262–273CrossRef
4.
go back to reference Duffau H, Capelle L, Denvil D, Sichez N, Gatignol P, Taillandier L, Lopes M, Mitchell MC, Roche S, Muller JC, Bitar A, Sichez JP, van Effenterre R (2003) Usefulness of intraoperative electrical subcortical mapping during surgery for low-grade gliomas located within eloquent brain regions: functional results in a consecutive series of 103 patients. J Neurosurg 98:764–778CrossRef Duffau H, Capelle L, Denvil D, Sichez N, Gatignol P, Taillandier L, Lopes M, Mitchell MC, Roche S, Muller JC, Bitar A, Sichez JP, van Effenterre R (2003) Usefulness of intraoperative electrical subcortical mapping during surgery for low-grade gliomas located within eloquent brain regions: functional results in a consecutive series of 103 patients. J Neurosurg 98:764–778CrossRef
5.
go back to reference Fulkerson DH, Satyan KB, Wilder LM, Riviello JJ, Stayer SA, Whitehead WE, Curry DJ, Dauser RC, Luerssen TG, Jea A (2011) Intraoperative monitoring of motor evoked potentials in very young children. J Neurosurg Pediatr 7:331–337CrossRef Fulkerson DH, Satyan KB, Wilder LM, Riviello JJ, Stayer SA, Whitehead WE, Curry DJ, Dauser RC, Luerssen TG, Jea A (2011) Intraoperative monitoring of motor evoked potentials in very young children. J Neurosurg Pediatr 7:331–337CrossRef
6.
go back to reference Jain P, Whitney R, Strantzas S, McCoy B, Ochi A, Otsubo H, Snead OC 3rd, Weiss S, Donner E, Pang E, Sharma R, Viljoen A, Keller A, Drake JM, Rutka JT, Go C (2018) Intra-operative cortical motor mapping using subdural grid electrodes in children undergoing epilepsy surgery evaluation and comparison with the conventional extra-operative motor mapping. Clin Neurophysiol 129:2642–2649CrossRef Jain P, Whitney R, Strantzas S, McCoy B, Ochi A, Otsubo H, Snead OC 3rd, Weiss S, Donner E, Pang E, Sharma R, Viljoen A, Keller A, Drake JM, Rutka JT, Go C (2018) Intra-operative cortical motor mapping using subdural grid electrodes in children undergoing epilepsy surgery evaluation and comparison with the conventional extra-operative motor mapping. Clin Neurophysiol 129:2642–2649CrossRef
7.
go back to reference Keles GE, Lundin DA, Lamborn KR, Chang EF, Ojemann G, Berger MS (2004) Intraoperative subcortical stimulation mapping for hemispherical perirolandic gliomas located within or adjacent to the descending motor pathways: evaluation of morbidity and assessment of functional outcome in 294 patients. J Neurosurg 100:369–375CrossRef Keles GE, Lundin DA, Lamborn KR, Chang EF, Ojemann G, Berger MS (2004) Intraoperative subcortical stimulation mapping for hemispherical perirolandic gliomas located within or adjacent to the descending motor pathways: evaluation of morbidity and assessment of functional outcome in 294 patients. J Neurosurg 100:369–375CrossRef
8.
go back to reference Lieberman JA, Lyon R, Feiner J, Diab M, Gregory GA (2006) The effect of age on motor evoked potentials in children under propofol/isoflurane anesthesia. Anesth Analg 103:316–321 table of contentsCrossRef Lieberman JA, Lyon R, Feiner J, Diab M, Gregory GA (2006) The effect of age on motor evoked potentials in children under propofol/isoflurane anesthesia. Anesth Analg 103:316–321 table of contentsCrossRef
9.
go back to reference Morota N, Ihara S, Deletis V (2010) Intraoperative neurophysiology for surgery in and around the brainstem: role of brainstem mapping and corticobulbar tract motor-evoked potential monitoring. Childs Nerv Syst 26:513–521CrossRef Morota N, Ihara S, Deletis V (2010) Intraoperative neurophysiology for surgery in and around the brainstem: role of brainstem mapping and corticobulbar tract motor-evoked potential monitoring. Childs Nerv Syst 26:513–521CrossRef
10.
go back to reference Moshel YA, Elliott RE, Monoky DJ, Wisoff JH (2009) Role of diffusion tensor imaging in resection of thalamic juvenile pilocytic astrocytoma. J Neurosurg Pediatr 4:495–505CrossRef Moshel YA, Elliott RE, Monoky DJ, Wisoff JH (2009) Role of diffusion tensor imaging in resection of thalamic juvenile pilocytic astrocytoma. J Neurosurg Pediatr 4:495–505CrossRef
11.
go back to reference Nossek E, Korn A, Shahar T, Kanner AA, Yaffe H, Marcovici D, Ben-Harosh C, Ben Ami H, Weinstein M, Shapira-Lichter I, Constantini S, Hendler T, Ram Z (2011) Intraoperative mapping and monitoring of the corticospinal tracts with neurophysiological assessment and 3-dimensional ultrasonography-based navigation. Clinical article. J Neurosurg 114:738–746CrossRef Nossek E, Korn A, Shahar T, Kanner AA, Yaffe H, Marcovici D, Ben-Harosh C, Ben Ami H, Weinstein M, Shapira-Lichter I, Constantini S, Hendler T, Ram Z (2011) Intraoperative mapping and monitoring of the corticospinal tracts with neurophysiological assessment and 3-dimensional ultrasonography-based navigation. Clinical article. J Neurosurg 114:738–746CrossRef
12.
go back to reference Raabe A, Beck J, Schucht P, Seidel K (2014) Continuous dynamic mapping of the corticospinal tract during surgery of motor eloquent brain tumors: evaluation of a new method. J Neurosurg 120:1015–1024CrossRef Raabe A, Beck J, Schucht P, Seidel K (2014) Continuous dynamic mapping of the corticospinal tract during surgery of motor eloquent brain tumors: evaluation of a new method. J Neurosurg 120:1015–1024CrossRef
13.
go back to reference Ringel F, Sala F (2015) Intraoperative mapping and monitoring in supratentorial tumor surgery. J Neurosurg Sci 59:129–139PubMed Ringel F, Sala F (2015) Intraoperative mapping and monitoring in supratentorial tumor surgery. J Neurosurg Sci 59:129–139PubMed
14.
go back to reference Roth J, Korn A, Bitan-Talmor Y, Kaufman R, Ekstein M, Constantini S (2017) Subcortical mapping using an electrified Cavitron ultrasonic aspirator in pediatric supratentorial surgery. World Neurosurg 101:357–364CrossRef Roth J, Korn A, Bitan-Talmor Y, Kaufman R, Ekstein M, Constantini S (2017) Subcortical mapping using an electrified Cavitron ultrasonic aspirator in pediatric supratentorial surgery. World Neurosurg 101:357–364CrossRef
16.
go back to reference Sala F, Coppola A, Tramontano V, Babini M, Pinna G (2015) Intraoperative neurophysiological monitoring for the resection of brain tumors in pediatric patients. J Neurosurg Sci 59:373–382PubMed Sala F, Coppola A, Tramontano V, Babini M, Pinna G (2015) Intraoperative neurophysiological monitoring for the resection of brain tumors in pediatric patients. J Neurosurg Sci 59:373–382PubMed
17.
go back to reference Sala F, Krzan MJ, Deletis V (2002) Intraoperative neurophysiological monitoring in pediatric neurosurgery: why, when, how? Childs Nerv Syst 18:264–287CrossRef Sala F, Krzan MJ, Deletis V (2002) Intraoperative neurophysiological monitoring in pediatric neurosurgery: why, when, how? Childs Nerv Syst 18:264–287CrossRef
18.
go back to reference Sala F, Lanteri P (2003) Brain surgery in motor areas: the invaluable assistance of intraoperative neurophysiological monitoring. J Neurosurg Sci 47:79–88PubMed Sala F, Lanteri P (2003) Brain surgery in motor areas: the invaluable assistance of intraoperative neurophysiological monitoring. J Neurosurg Sci 47:79–88PubMed
19.
go back to reference Sala F, Manganotti P, Grossauer S, Tramontanto V, Mazza C, Gerosa M (2010) Intraoperative neurophysiology of the motor system in children: a tailored approach. Childs Nerv Syst 26:473–490CrossRef Sala F, Manganotti P, Grossauer S, Tramontanto V, Mazza C, Gerosa M (2010) Intraoperative neurophysiology of the motor system in children: a tailored approach. Childs Nerv Syst 26:473–490CrossRef
20.
go back to reference Shiban E, Krieg SM, Haller B, Buchmann N, Obermueller T, Boeckh-Behrens T, Wostrack M, Meyer B, Ringel F (2015) Intraoperative subcortical motor evoked potential stimulation: how close is the corticospinal tract? J Neurosurg 123:711–720CrossRef Shiban E, Krieg SM, Haller B, Buchmann N, Obermueller T, Boeckh-Behrens T, Wostrack M, Meyer B, Ringel F (2015) Intraoperative subcortical motor evoked potential stimulation: how close is the corticospinal tract? J Neurosurg 123:711–720CrossRef
21.
go back to reference Shiban E, Krieg SM, Obermueller T, Wostrack M, Meyer B, Ringel F (2015) Continuous subcortical motor evoked potential stimulation using the tip of an ultrasonic aspirator for the resection of motor eloquent lesions. J Neurosurg 123:301–306CrossRef Shiban E, Krieg SM, Obermueller T, Wostrack M, Meyer B, Ringel F (2015) Continuous subcortical motor evoked potential stimulation using the tip of an ultrasonic aspirator for the resection of motor eloquent lesions. J Neurosurg 123:301–306CrossRef
22.
go back to reference Vadivelu S, Sivaganesan A, Patel AJ, Agadi S, Schmidt RJ, Mani P, Jea A (2014) Practice trends in the utilization of intraoperative neurophysiological monitoring in pediatric neurosurgery as a function of complication rate, and patient-, surgeon-, and procedure-related factors. World Neurosurg 81:617–623CrossRef Vadivelu S, Sivaganesan A, Patel AJ, Agadi S, Schmidt RJ, Mani P, Jea A (2014) Practice trends in the utilization of intraoperative neurophysiological monitoring in pediatric neurosurgery as a function of complication rate, and patient-, surgeon-, and procedure-related factors. World Neurosurg 81:617–623CrossRef
23.
go back to reference Verla T, Fridley JS, Khan AB, Mayer RR, Omeis I (2016) Neuromonitoring for intramedullary spinal cord tumor surgery. World Neurosurg 95:108–116CrossRef Verla T, Fridley JS, Khan AB, Mayer RR, Omeis I (2016) Neuromonitoring for intramedullary spinal cord tumor surgery. World Neurosurg 95:108–116CrossRef
24.
go back to reference Wisoff JH, Sanford RA, Heier LA, Sposto R, Burger PC, Yates AJ, Holmes EJ, Kun LE (2011) Primary neurosurgery for pediatric low-grade gliomas: a prospective multi-institutional study from the Children’s Oncology Group. Neurosurgery 68:1548–1554 discussion 1554-1545CrossRef Wisoff JH, Sanford RA, Heier LA, Sposto R, Burger PC, Yates AJ, Holmes EJ, Kun LE (2011) Primary neurosurgery for pediatric low-grade gliomas: a prospective multi-institutional study from the Children’s Oncology Group. Neurosurgery 68:1548–1554 discussion 1554-1545CrossRef
25.
go back to reference Yang TF, Chen HH, Liang ML, Chen C, Chiu JW, Wang JC, Lai CJ, Liao KK, Chan RC (2014) Intraoperative brain mapping to identify corticospinal projections during resective epilepsy surgery in children with congenital hemiparesis. Childs Nerv Syst 30:1559–1564CrossRef Yang TF, Chen HH, Liang ML, Chen C, Chiu JW, Wang JC, Lai CJ, Liao KK, Chan RC (2014) Intraoperative brain mapping to identify corticospinal projections during resective epilepsy surgery in children with congenital hemiparesis. Childs Nerv Syst 30:1559–1564CrossRef
Metadata
Title
Intraoperative neurophysiology in pediatric supratentorial surgery: experience with 57 cases
Authors
Jonathan Roth
Akiva Korn
Francesco Sala
Haggai Benvenisti
Muna Jubran
Yifat Bitan-Talmor
Margaret Ekstein
Shlomi Constantini
Publication date
01-02-2020
Publisher
Springer Berlin Heidelberg
Published in
Child's Nervous System / Issue 2/2020
Print ISSN: 0256-7040
Electronic ISSN: 1433-0350
DOI
https://doi.org/10.1007/s00381-019-04356-0

Other articles of this Issue 2/2020

Child's Nervous System 2/2020 Go to the issue