Skip to main content
Top
Published in: Child's Nervous System 2/2019

01-02-2019 | Original Paper

Cerebro-venous hypertension: a frequent cause of so-called “external hydrocephalus” in infants

Authors: Laura V. Sainz, Julian Zipfel, Susanne R. Kerscher, Annette Weichselbaum, Andrea Bevot, Martin U. Schuhmann

Published in: Child's Nervous System | Issue 2/2019

Login to get access

Abstract

Introduction

External hydrocephalus (eHC) is commonly defined as a subtype of infant “hydrocephalus” consisting of macrocepahly associated with enlarged subarachnoid space and no or mild ventriculomegaly. This status is thought to be related to impaired CSF absorption because of arachnoid villi immaturity. However, other factors like the venous system might be involved in the development of the clinical picture.

Methods

All patients diagnosed with eHC received prospectively contrast-enhanced 3D MR phlebography. Venous sis abnormalities were graded depending on the number of affected sinus segments and type. External CSF space volume was quantified planimetrically.

Results

Seventeen patients with the typical clinical feature of eHC were included. In 15, venous sinus abnormalities were found. There was a significant correlation between the volume of the widened cortical subarachnoid space (CSAS) and the number of venous sinus segments affected. Conversely, ventricular volume was not correlated.

Conclusion

These results support the hypothesis that impaired venous outflow plays a major role in external hydrocephalus development. Raised venous pressure increases intracranial pressure accelerating head growth, resulting in an enlargement of the cortical subarachnoid space. Increased venous pressure increases the capillary bed pressure and brain turgor preventing ventricular space to enlarge forcing displacement of ventricular CSF to the subarachnoid space. As a result, ventriculomegaly is rarely found. The descriptive term “external hydrocephalus” implying a primary etiology within the CSF system is misleading and this work supports the notion that venous hypertension is the leading cause of the clinical picture.
Literature
1.
go back to reference Barlow CF (1984) CSF dynamics in hydrocephalus—with special attention to external hydrocephalus. Brain Dev 6:119–127CrossRefPubMed Barlow CF (1984) CSF dynamics in hydrocephalus—with special attention to external hydrocephalus. Brain Dev 6:119–127CrossRefPubMed
2.
go back to reference Bateman GA (2010) Hyperemic hydrocephalus: a new form of childhood hydrocephalus analogous to hyperemic intracranial hypertension in adults. J Neurosurg Pediatr 5(1):20–26CrossRefPubMed Bateman GA (2010) Hyperemic hydrocephalus: a new form of childhood hydrocephalus analogous to hyperemic intracranial hypertension in adults. J Neurosurg Pediatr 5(1):20–26CrossRefPubMed
3.
go back to reference Bateman GA, Alber M, Schuhmann MU (2014) An association between external hydrocephalus in infants and reversible collapse of the venous sinuses. Neuropediatrics 45:183–187PubMed Bateman GA, Alber M, Schuhmann MU (2014) An association between external hydrocephalus in infants and reversible collapse of the venous sinuses. Neuropediatrics 45:183–187PubMed
4.
go back to reference Bateman GA, Brown KM (2011) The measurement of CSF flow through the aqueduct in normal and hydrocephalic children: from where does it come, to where does it go? Childs Nerv Syst 28:55–63CrossRefPubMed Bateman GA, Brown KM (2011) The measurement of CSF flow through the aqueduct in normal and hydrocephalic children: from where does it come, to where does it go? Childs Nerv Syst 28:55–63CrossRefPubMed
5.
go back to reference Bateman GA, Napier BD (2011) External hydrocephalus in infants: six cases with MR venogram and flow quantification correlation. Childs Nerv Syst 27:2087–2096CrossRef Bateman GA, Napier BD (2011) External hydrocephalus in infants: six cases with MR venogram and flow quantification correlation. Childs Nerv Syst 27:2087–2096CrossRef
7.
go back to reference De Bonis P, Pompucci A, Mangiola A, Rigante L, Anile C (2010) Post-traumatic hydrocephalus after decompressive craniectomy: an underestimated risk factor. J Neurotrauma 27:1965–1970CrossRefPubMed De Bonis P, Pompucci A, Mangiola A, Rigante L, Anile C (2010) Post-traumatic hydrocephalus after decompressive craniectomy: an underestimated risk factor. J Neurotrauma 27:1965–1970CrossRefPubMed
8.
go back to reference De Simone R, Ranieri A, Montella S, Bilo L, Cautiero F (2014) The role of dural sinus stenosis in idiopathic intracranial hypertension pathogenesis: the self-limiting venous collapse feedback-loop model. Panminerva Med 56(3):201–209PubMed De Simone R, Ranieri A, Montella S, Bilo L, Cautiero F (2014) The role of dural sinus stenosis in idiopathic intracranial hypertension pathogenesis: the self-limiting venous collapse feedback-loop model. Panminerva Med 56(3):201–209PubMed
9.
go back to reference Dillon T, Berman W Jr, Yabek SM, Seigel R, Akl B, Wernly J (1986) Communicating hydrocephalus: a reversible complication of the mustard operation with serial hemodynamics and long-term follow-up. Ann Thorac Surg 41:146–149CrossRefPubMed Dillon T, Berman W Jr, Yabek SM, Seigel R, Akl B, Wernly J (1986) Communicating hydrocephalus: a reversible complication of the mustard operation with serial hemodynamics and long-term follow-up. Ann Thorac Surg 41:146–149CrossRefPubMed
10.
go back to reference Frydrychowski AF, Winklewski PJ, Guminski W (2012) Influence of acute jugular vein compression on the cerebral blood flow velocity, pial artery pulsation and width of subarachnoid space in humans. PLoS One 7(10):e48245CrossRefPubMedPubMedCentral Frydrychowski AF, Winklewski PJ, Guminski W (2012) Influence of acute jugular vein compression on the cerebral blood flow velocity, pial artery pulsation and width of subarachnoid space in humans. PLoS One 7(10):e48245CrossRefPubMedPubMedCentral
11.
go back to reference Hanlo PW, Gooskens RJ, van Schooneveld M, Tulleken CA, van der Knaap MS, Faber JA, Willemse J (1997) The effect of intracranial pressure on myelination and the relationship with neurodevelopment in infantile hydrocephalus. Dev Med Child Neurol 39:286–291CrossRefPubMed Hanlo PW, Gooskens RJ, van Schooneveld M, Tulleken CA, van der Knaap MS, Faber JA, Willemse J (1997) The effect of intracranial pressure on myelination and the relationship with neurodevelopment in infantile hydrocephalus. Dev Med Child Neurol 39:286–291CrossRefPubMed
12.
go back to reference Hellbush LC (2007) Benign extracerebral fluid collections in infancy: clinical presentation and long-term follow-up. J Neurosurg 107(2 Suppl Pediatrics):119–125 Hellbush LC (2007) Benign extracerebral fluid collections in infancy: clinical presentation and long-term follow-up. J Neurosurg 107(2 Suppl Pediatrics):119–125
13.
go back to reference Kapoor KG, Katz SE, Grzybowski DM, Lubow M (2008) Cerebrospinal fluid outflow: an evolving perspective. Brain Res Bull 77:327–334CrossRefPubMed Kapoor KG, Katz SE, Grzybowski DM, Lubow M (2008) Cerebrospinal fluid outflow: an evolving perspective. Brain Res Bull 77:327–334CrossRefPubMed
14.
15.
go back to reference Kendall B, Holland I (1981) Benign communicating hydrocephalus in children. Neuroradiology 21:93–96CrossRefPubMed Kendall B, Holland I (1981) Benign communicating hydrocephalus in children. Neuroradiology 21:93–96CrossRefPubMed
16.
go back to reference Leliefeld PH, Gooskens RHJM, Vicken KL, Ramos LM, van der Grond J, Tulleken CAF et al (2008) Magnetic resonance imaging for quantitative flow measurement in infants with hydrocephalus: a prospective study. J Neurosurg Pediatrics 2:163–170CrossRef Leliefeld PH, Gooskens RHJM, Vicken KL, Ramos LM, van der Grond J, Tulleken CAF et al (2008) Magnetic resonance imaging for quantitative flow measurement in infants with hydrocephalus: a prospective study. J Neurosurg Pediatrics 2:163–170CrossRef
17.
go back to reference Libicher M, Tröger J (1992) US measurement of the subarachnoid space in infants: normal values. Radiology 184(3):749–751CrossRefPubMed Libicher M, Tröger J (1992) US measurement of the subarachnoid space in infants: normal values. Radiology 184(3):749–751CrossRefPubMed
18.
go back to reference Maki Y, Kokubo Y, Nose T, Yoshii Y (1976) Some characteristic findings of isotope cisternograms in children. J Neurosurg 45:56–59CrossRefPubMed Maki Y, Kokubo Y, Nose T, Yoshii Y (1976) Some characteristic findings of isotope cisternograms in children. J Neurosurg 45:56–59CrossRefPubMed
19.
go back to reference Maytal J, Alvarez LA, Elkin CM, Shinnar S (1987) External hydrocephalus: radiologic spectrum and differentiation from cerebral atrophy. AJR Am J Roentgenol 148:1223–1230CrossRefPubMed Maytal J, Alvarez LA, Elkin CM, Shinnar S (1987) External hydrocephalus: radiologic spectrum and differentiation from cerebral atrophy. AJR Am J Roentgenol 148:1223–1230CrossRefPubMed
20.
go back to reference Muenchberger H, Assaad N, Joy P, Brunsdon R, Shores EA (2006) Idiopathic macrocephaly in the infant: long-term neurological and neuropsychological outcome. Childs Nerv Syst 22(10):1242–1248CrossRefPubMed Muenchberger H, Assaad N, Joy P, Brunsdon R, Shores EA (2006) Idiopathic macrocephaly in the infant: long-term neurological and neuropsychological outcome. Childs Nerv Syst 22(10):1242–1248CrossRefPubMed
21.
go back to reference Norrell H, Wilson C, Howieson J et al (1969) Venous factors in infantile hydrocephalus. J Neurosurg 31:561–569CrossRefPubMed Norrell H, Wilson C, Howieson J et al (1969) Venous factors in infantile hydrocephalus. J Neurosurg 31:561–569CrossRefPubMed
22.
go back to reference O’Hayon BB, Drake JM, Ossip MG, Tuli S, Clarke M (1998) Frontal and occipital horn ratio: a linear estimate of ventricular size for multiple imaging modalities in pediatric hydrocephalus. Pediatr Neurosurg 29(5):245–249CrossRef O’Hayon BB, Drake JM, Ossip MG, Tuli S, Clarke M (1998) Frontal and occipital horn ratio: a linear estimate of ventricular size for multiple imaging modalities in pediatric hydrocephalus. Pediatr Neurosurg 29(5):245–249CrossRef
23.
go back to reference Oi S, Di Rocco C (2006) Proposal of “evolution theory in cerebrospinal fluid dynamics” and minor pathway hydrocephalus in developing immature brain. Childs Nerv Syst 22:662–669vCrossRefPubMed Oi S, Di Rocco C (2006) Proposal of “evolution theory in cerebrospinal fluid dynamics” and minor pathway hydrocephalus in developing immature brain. Childs Nerv Syst 22:662–669vCrossRefPubMed
24.
go back to reference Rekate HL, Nadkarni TD, Wallace D (2008) The importance of the cortical subarachnoid space in understanding hydrocephalus. J Neurosurg Pediatr 2(1):1–11CrossRefPubMed Rekate HL, Nadkarni TD, Wallace D (2008) The importance of the cortical subarachnoid space in understanding hydrocephalus. J Neurosurg Pediatr 2(1):1–11CrossRefPubMed
25.
go back to reference Turner L (1961) The structure of arachnoid granulations with observations on their physiology and pathophysiological significance. Ann R Coll Surg Engl 29:237–264PubMedPubMedCentral Turner L (1961) The structure of arachnoid granulations with observations on their physiology and pathophysiological significance. Ann R Coll Surg Engl 29:237–264PubMedPubMedCentral
26.
go back to reference Wiig US, Zahl SM, Egge A, Helseth E, Wester K (2017) Epidemiology of benign external hydrocephalus in Norway-a population-based study. Pediatr Neurol 73:36–41CrossRefPubMed Wiig US, Zahl SM, Egge A, Helseth E, Wester K (2017) Epidemiology of benign external hydrocephalus in Norway-a population-based study. Pediatr Neurol 73:36–41CrossRefPubMed
Metadata
Title
Cerebro-venous hypertension: a frequent cause of so-called “external hydrocephalus” in infants
Authors
Laura V. Sainz
Julian Zipfel
Susanne R. Kerscher
Annette Weichselbaum
Andrea Bevot
Martin U. Schuhmann
Publication date
01-02-2019
Publisher
Springer Berlin Heidelberg
Published in
Child's Nervous System / Issue 2/2019
Print ISSN: 0256-7040
Electronic ISSN: 1433-0350
DOI
https://doi.org/10.1007/s00381-018-4007-3

Other articles of this Issue 2/2019

Child's Nervous System 2/2019 Go to the issue