Skip to main content
Top
Published in: Child's Nervous System 6/2016

01-06-2016 | Original Paper

A practical 3D printed simulator for endoscopic endonasal transsphenoidal surgery to improve basic operational skills

Authors: Guodao Wen, ZiXiang Cong, KaiDong Liu, Chao Tang, Chunyu Zhong, Liwen Li, XuJie Dai, Chiyuan Ma

Published in: Child's Nervous System | Issue 6/2016

Login to get access

Abstract

Purpose

We aimed to present a practical three-dimensional (3D) printed simulator to comprehensively and effectively accelerate the learning curve of endoscopic endonasal transsphenoidal surgery (EETS).

Methods

The 3D printed simulator consists of three parts: (1) skull frame, (2) the nasal passage and the nasal alar of the face, and (3) a modified sella turcica. We aimed to improve three basic operational skills of surgeons: drilling, curetting, and aspirating. Eighteen neurosurgeons and five post-graduates were recruited and consented for the training.

Results

For trainees, (1) as the training progressed, the scores increased gradually, (2) a significant increase in the average scores was observed in the tenth training compared to the first training, and (3) there is a significant decrease in trainee variability in the shortening of the gap. The 18 neurosurgeons were divided into three groups: experts, assistants, and observers. For all three basic operations, (1) the average score of experts was obviously higher than that of the assistants, observers, and trainees’ tenth training and (2) the average scores of assistants and observers were obviously higher than that of trainees’ first training. A significant high in the average score between the assistants and the observers was seen for aspirating, but not for drilling or curetting. For curetting and aspirating, the tenth training average score of trainees was obviously higher than that of assistants and observers.

Conclusion

This 3D printed simulator allows different endoscopic basic operations to be simulated and improves the EETS techniques of surgeons. We believed it to be a practical, simple, and low-cost simulator.
Literature
1.
go back to reference Jho HD, Carrau RL (1997) Endoscopic endonasal transsphenoidal surgery: experience with 50 patients. J Neurosurg 87:44–51CrossRefPubMed Jho HD, Carrau RL (1997) Endoscopic endonasal transsphenoidal surgery: experience with 50 patients. J Neurosurg 87:44–51CrossRefPubMed
2.
go back to reference Oertel J, Gaab MR, Tschan CA, Linsler S (2015) Mononostril endoscopic transsphenoidal approach to sellar and peri-sellar lesions: personal experience and literature review. Br J Neurosurg 29:532–537CrossRefPubMed Oertel J, Gaab MR, Tschan CA, Linsler S (2015) Mononostril endoscopic transsphenoidal approach to sellar and peri-sellar lesions: personal experience and literature review. Br J Neurosurg 29:532–537CrossRefPubMed
3.
go back to reference Linsler S, Gaab MR, Oertel J (2013) Endoscopic endonasal transsphenoidal approach to sellar lesions: a detailed account of our mononostril technique. J Neurol Surg Part B-Skull Base 74:146–154CrossRef Linsler S, Gaab MR, Oertel J (2013) Endoscopic endonasal transsphenoidal approach to sellar lesions: a detailed account of our mononostril technique. J Neurol Surg Part B-Skull Base 74:146–154CrossRef
4.
go back to reference Chi F, Wang Y, Lin Y, Ge J, Qiu Y, Guo L (2013) A learning curve of endoscopic transsphenoidal surgery for pituitary adenoma. J Craniofac Surg 24:2064–2067CrossRefPubMed Chi F, Wang Y, Lin Y, Ge J, Qiu Y, Guo L (2013) A learning curve of endoscopic transsphenoidal surgery for pituitary adenoma. J Craniofac Surg 24:2064–2067CrossRefPubMed
5.
go back to reference Rehder R, Abd-El-Barr M, Hooten K, Weinstock P, Madsen JR, Cohen AR (2015) The role of simulation in neurosurgery. Child’s Nerv Syst ChNS: Off J Int Soc Pediatric Neurosurg 32:43–54CrossRef Rehder R, Abd-El-Barr M, Hooten K, Weinstock P, Madsen JR, Cohen AR (2015) The role of simulation in neurosurgery. Child’s Nerv Syst ChNS: Off J Int Soc Pediatric Neurosurg 32:43–54CrossRef
6.
go back to reference Olabe J, Olabe J, Sancho V (2009) Human cadaver brain infusion model for neurosurgical training. Surg Neurol 72:700–702CrossRefPubMed Olabe J, Olabe J, Sancho V (2009) Human cadaver brain infusion model for neurosurgical training. Surg Neurol 72:700–702CrossRefPubMed
7.
go back to reference Rosseau G, Bailes J, del Maestro R, Cabral A, Choudhury N, Comas O, Debergue P, De Luca G, Hovdebo J, Jiang D, Laroche D, Neubauer A, Pazos V, Thibault F, Diraddo R (2013) The development of a virtual simulator for training neurosurgeons to perform and perfect endoscopic endonasal transsphenoidal surgery. Neurosurgery 73(Suppl 1):85–93CrossRefPubMed Rosseau G, Bailes J, del Maestro R, Cabral A, Choudhury N, Comas O, Debergue P, De Luca G, Hovdebo J, Jiang D, Laroche D, Neubauer A, Pazos V, Thibault F, Diraddo R (2013) The development of a virtual simulator for training neurosurgeons to perform and perfect endoscopic endonasal transsphenoidal surgery. Neurosurgery 73(Suppl 1):85–93CrossRefPubMed
8.
go back to reference Jaimovich SG, Bailez M, Asprea M, Jaimovich R (2015) Neurosurgical training with simulators: a novel neuroendoscopy model. Child’s Nerv Syst ChNS Off J Int Soc Pediatric Neurosurg 32:345–349CrossRef Jaimovich SG, Bailez M, Asprea M, Jaimovich R (2015) Neurosurgical training with simulators: a novel neuroendoscopy model. Child’s Nerv Syst ChNS Off J Int Soc Pediatric Neurosurg 32:345–349CrossRef
9.
go back to reference Tai BL, Wang AC, Joseph JR, Wang PI, Sullivan SE, McKean EL, Shih AJ, Rooney DM (2015) A physical simulator for endoscopic endonasal drilling techniques: technical note. J Neurosurg 124:1–6 Tai BL, Wang AC, Joseph JR, Wang PI, Sullivan SE, McKean EL, Shih AJ, Rooney DM (2015) A physical simulator for endoscopic endonasal drilling techniques: technical note. J Neurosurg 124:1–6
10.
go back to reference Okuda T, Yamashita J, Fujita M, Yoshioka H, Tasaki T, Kato A (2014) The chicken egg and skull model of endoscopic endonasal transsphenoidal surgery improves trainee drilling skills. Acta Neurochir 156:1403–1407CrossRefPubMed Okuda T, Yamashita J, Fujita M, Yoshioka H, Tasaki T, Kato A (2014) The chicken egg and skull model of endoscopic endonasal transsphenoidal surgery improves trainee drilling skills. Acta Neurochir 156:1403–1407CrossRefPubMed
11.
go back to reference Okuda T, Kataoka K, Kato A (2010) Training in endoscopic endonasal transsphenoidal surgery using a skull model and eggs. Acta Neurochir 152:1801–1804CrossRefPubMed Okuda T, Kataoka K, Kato A (2010) Training in endoscopic endonasal transsphenoidal surgery using a skull model and eggs. Acta Neurochir 152:1801–1804CrossRefPubMed
12.
go back to reference El-Fiki ME, Aly A, Elwany S (2012) Binasal endoscopic approach to the sellar region: experience and outcome analysis of 80 cases. J Neurol Surg B Skull Base 73:287–291CrossRefPubMedPubMedCentral El-Fiki ME, Aly A, Elwany S (2012) Binasal endoscopic approach to the sellar region: experience and outcome analysis of 80 cases. J Neurol Surg B Skull Base 73:287–291CrossRefPubMedPubMedCentral
13.
go back to reference Arora H, Uribe J, Ralph W, Zeltsan M, Cuellar H, Gallagher A, Fried MP (2005) Assessment of construct validity of the endoscopic sinus surgery simulator. Arch Otolaryngol Head Neck Surg 131:217–221CrossRefPubMed Arora H, Uribe J, Ralph W, Zeltsan M, Cuellar H, Gallagher A, Fried MP (2005) Assessment of construct validity of the endoscopic sinus surgery simulator. Arch Otolaryngol Head Neck Surg 131:217–221CrossRefPubMed
14.
go back to reference Nogueira JF, Stamm AC, Lyra M, Balieiro FO, Leao FS (2008) Building a real endoscopic sinus and skull-base surgery simulator. Otolaryngol Head Neck Surg Off J Am Acad Otolaryngol Head Neck Surg 139:727–728CrossRef Nogueira JF, Stamm AC, Lyra M, Balieiro FO, Leao FS (2008) Building a real endoscopic sinus and skull-base surgery simulator. Otolaryngol Head Neck Surg Off J Am Acad Otolaryngol Head Neck Surg 139:727–728CrossRef
15.
go back to reference Satava RM (2010) Emerging trends that herald the future of surgical simulation. Surg Clin North Am 90:623–633CrossRefPubMed Satava RM (2010) Emerging trends that herald the future of surgical simulation. Surg Clin North Am 90:623–633CrossRefPubMed
16.
go back to reference Selden NR, Origitano TC, Hadjipanayis C, Byrne R (2013) Model-based simulation for early neurosurgical learners. Neurosurgery 73(Suppl 1):15–24CrossRefPubMed Selden NR, Origitano TC, Hadjipanayis C, Byrne R (2013) Model-based simulation for early neurosurgical learners. Neurosurgery 73(Suppl 1):15–24CrossRefPubMed
17.
go back to reference Hayashi N, Kurimoto M, Hamada H, Kurosaki K, Endo S, Cohen AR (2008) Preparation of a simple and efficient laboratory model for training in neuroendoscopic procedures. Child’s Nerv Syst ChNS Off J Int Soc Pediatric Neurosurg 24:749–751CrossRef Hayashi N, Kurimoto M, Hamada H, Kurosaki K, Endo S, Cohen AR (2008) Preparation of a simple and efficient laboratory model for training in neuroendoscopic procedures. Child’s Nerv Syst ChNS Off J Int Soc Pediatric Neurosurg 24:749–751CrossRef
18.
go back to reference Filho FV, Coelho G, Cavalheiro S, Lyra M, Zymberg ST (2011) Quality assessment of a new surgical simulator for neuroendoscopic training. Neurosurg Focus 30:E17 Filho FV, Coelho G, Cavalheiro S, Lyra M, Zymberg ST (2011) Quality assessment of a new surgical simulator for neuroendoscopic training. Neurosurg Focus 30:E17
19.
go back to reference Lemole M, Banerjee PP, Luciano C, Charbel F, Oh M (2009) Virtual ventriculostomy with ‘shifted ventricle’: neurosurgery resident surgical skill assessment using a high-fidelity haptic/graphic virtual reality simulator. Neurol Res 31:430–431 Lemole M, Banerjee PP, Luciano C, Charbel F, Oh M (2009) Virtual ventriculostomy with ‘shifted ventricle’: neurosurgery resident surgical skill assessment using a high-fidelity haptic/graphic virtual reality simulator. Neurol Res 31:430–431
20.
go back to reference Bodhinayake I, Ottenhausen M, Mooney MA, Kesavabhotla K, Christos P, Schwarz JT, Boockvar JA (2014) Results and risk factors for recurrence following endoscopic endonasal transsphenoidal surgery for pituitary adenoma. Clin Neurol Neurosurg 119:75–79CrossRefPubMed Bodhinayake I, Ottenhausen M, Mooney MA, Kesavabhotla K, Christos P, Schwarz JT, Boockvar JA (2014) Results and risk factors for recurrence following endoscopic endonasal transsphenoidal surgery for pituitary adenoma. Clin Neurol Neurosurg 119:75–79CrossRefPubMed
21.
go back to reference Zador Z, Gnanalingham K (2013) Endoscopic transnasal approach to the pituitary—operative technique and nuances. Br J Neurosurg 27:718–726CrossRefPubMed Zador Z, Gnanalingham K (2013) Endoscopic transnasal approach to the pituitary—operative technique and nuances. Br J Neurosurg 27:718–726CrossRefPubMed
Metadata
Title
A practical 3D printed simulator for endoscopic endonasal transsphenoidal surgery to improve basic operational skills
Authors
Guodao Wen
ZiXiang Cong
KaiDong Liu
Chao Tang
Chunyu Zhong
Liwen Li
XuJie Dai
Chiyuan Ma
Publication date
01-06-2016
Publisher
Springer Berlin Heidelberg
Published in
Child's Nervous System / Issue 6/2016
Print ISSN: 0256-7040
Electronic ISSN: 1433-0350
DOI
https://doi.org/10.1007/s00381-016-3051-0

Other articles of this Issue 6/2016

Child's Nervous System 6/2016 Go to the issue