Skip to main content
Top
Published in: Child's Nervous System 2/2016

01-02-2016 | Original Paper

Neurosurgical training with simulators: a novel neuroendoscopy model

Authors: Sebastián G. Jaimovich, Marcela Bailez, Marcelo Asprea, Roberto Jaimovich

Published in: Child's Nervous System | Issue 2/2016

Login to get access

Abstract

Purpose

The aim of this study is to present a novel neuroendoscopy simulation model in live animals, with the objective of enhancing patient safety with realistic surgical training.

Methods

A simulation model using live Wistar rats was designed after the approval of the Institutional Committee for the Care and Use of Laboratory Animals. Under anesthesia, a hydroperitoneum was created in order to simulate a cavity with mesenteric membranes and vessels, viscera, and a solid and bleeding tumor (the liver) floating in a liquid environment. For validation purposes, we evaluated trainees’ basal and final skills for each neuroendoscopic procedure, and we also acknowledged trainees’ and instructors’ opinion on the model’s realism.

Results

This model is simple and low cost effective for complete and real-life training in neuroendoscopy, with the possibility of performing all the basic and advanced endoscopic procedures, such as endoscopic exploration, membrane fenestration, vessel coagulation, hematoma evacuation, and endoscopic tumor biopsy and resection using a ventricular neuroendoscopy set. Although the model does not represent human ventricular anatomy, a reliable simulation is possible in real living tissue in a liquid environment. Trainees’ skills improvements were notorious.

Conclusion

Minimally invasive endoscopic techniques require specific training. Simulation training can improve and accelerate the learning curve. The presented training model allows simulating the different neuroendoscopic procedures. We believe that due to its practical possibilities, its simplicity, low cost, reproducibility, and reality, being live animal tissue, it can be considered a fundamental model within a complete training program on neuroendoscopy.
Literature
1.
go back to reference Barassi N, Benavides F, Ceccarelli A (1996). Ética en el uso de animales de experimentación. Medicina 56 (5) [spanish] Barassi N, Benavides F, Ceccarelli A (1996). Ética en el uso de animales de experimentación. Medicina 56 (5) [spanish]
2.
go back to reference Coelho G, Kondageski C, Vaz-Guimarães Filho F, Ramina R, Hunhevicz SC, Daga F, Lyra MR, CavalheiroS ZST (2011) Frameless image-guided neuroendoscopy training in real simulators. Minim Invas Neurosurg 54:115–118CrossRef Coelho G, Kondageski C, Vaz-Guimarães Filho F, Ramina R, Hunhevicz SC, Daga F, Lyra MR, CavalheiroS ZST (2011) Frameless image-guided neuroendoscopy training in real simulators. Minim Invas Neurosurg 54:115–118CrossRef
3.
go back to reference Davis LE (1936) Neurological surgery. Lea & Febiger, Philadelphia Davis LE (1936) Neurological surgery. Lea & Febiger, Philadelphia
4.
go back to reference Declaración de la Asamblea Médica Mundial sobre el Uso de Animales en la Investigación Biomédica. Adoptada por la 41a Asamblea Médica Mundial Hong Kong, Septiembre 1989 y revisada por la 57a Asamblea General de la AMM, Pilanesberg, Sudáfrica, Octubre 2006 Declaración de la Asamblea Médica Mundial sobre el Uso de Animales en la Investigación Biomédica. Adoptada por la 41a Asamblea Médica Mundial Hong Kong, Septiembre 1989 y revisada por la 57a Asamblea General de la AMM, Pilanesberg, Sudáfrica, Octubre 2006
5.
go back to reference Delorme S, Laroche D, Di Raddo R, Del Maestro RF (2012) NeuroTouch: a physics-based virtual simulator for cranial microneurosurgery training. Neurosurgery 71:32–42PubMed Delorme S, Laroche D, Di Raddo R, Del Maestro RF (2012) NeuroTouch: a physics-based virtual simulator for cranial microneurosurgery training. Neurosurgery 71:32–42PubMed
6.
go back to reference Grant FC, Fay T (1923) Ventriculoscopy and intraventricular photography in internal hydrocephalus. Jama 80:461–463CrossRef Grant FC, Fay T (1923) Ventriculoscopy and intraventricular photography in internal hydrocephalus. Jama 80:461–463CrossRef
7.
8.
go back to reference Haji FA, Dubrowski A, Drake J, Ribaupierre S (2013) Needs assessment for simulation training in neuroendoscopy: a Canadian national survey. J Neurosurg 118:250–257CrossRefPubMed Haji FA, Dubrowski A, Drake J, Ribaupierre S (2013) Needs assessment for simulation training in neuroendoscopy: a Canadian national survey. J Neurosurg 118:250–257CrossRefPubMed
9.
go back to reference Jongh Cobo E, Pereira Borges FR, Pereira Riverón R (2005) Modelo simulador para entrenamiento en neuroendoscopia y neuroanatomía. Rev Cubana Cir 44(1) [spanish] Jongh Cobo E, Pereira Borges FR, Pereira Riverón R (2005) Modelo simulador para entrenamiento en neuroendoscopia y neuroanatomía. Rev Cubana Cir 44(1) [spanish]
10.
go back to reference Krisht AF, Yoo K, Arnautovic KI, Al-Mefty O (2005) Cavernous sinus tumor model in the canine: a simulation model for cavernous sinus tumor surgery. Neurosurgery 56:1361–1366CrossRefPubMed Krisht AF, Yoo K, Arnautovic KI, Al-Mefty O (2005) Cavernous sinus tumor model in the canine: a simulation model for cavernous sinus tumor surgery. Neurosurgery 56:1361–1366CrossRefPubMed
11.
go back to reference Mixter WJ (1923) Ventriculoscopy and puncture of the floor of the third ventricle. Boston Med Surg J 188:277–278CrossRef Mixter WJ (1923) Ventriculoscopy and puncture of the floor of the third ventricle. Boston Med Surg J 188:277–278CrossRef
12.
go back to reference Neubauer A, Wolfsberger S (2013) Virtual endoscopy in neurosurgery: a review. Neurosurgery 72:97–106CrossRefPubMed Neubauer A, Wolfsberger S (2013) Virtual endoscopy in neurosurgery: a review. Neurosurgery 72:97–106CrossRefPubMed
13.
go back to reference Olabe J, Olabe J, Sancho V (2009) Human cadaver brain infusion model for neurosurgical training. Surg Neurol 72:700–702CrossRefPubMed Olabe J, Olabe J, Sancho V (2009) Human cadaver brain infusion model for neurosurgical training. Surg Neurol 72:700–702CrossRefPubMed
14.
go back to reference Satava RM (2010) Emerging trends that herald the future of surgical simulation. Surg Clin N Am 90(3):623–633CrossRefPubMed Satava RM (2010) Emerging trends that herald the future of surgical simulation. Surg Clin N Am 90(3):623–633CrossRefPubMed
15.
go back to reference Schirmer CM, Mocco J, Bradley EJ (2013) Evolving virtual reality simulation in neurosurgery. Neurosurgery 73:127–137CrossRefPubMed Schirmer CM, Mocco J, Bradley EJ (2013) Evolving virtual reality simulation in neurosurgery. Neurosurgery 73:127–137CrossRefPubMed
16.
go back to reference Selden NR, Origitano TC, Hadjipanayis C, Byrne R (2013) Model-based simulation for early neurosurgical learners. Neurosurgery 73:15–24CrossRefPubMed Selden NR, Origitano TC, Hadjipanayis C, Byrne R (2013) Model-based simulation for early neurosurgical learners. Neurosurgery 73:15–24CrossRefPubMed
17.
go back to reference Vaz-Guimarães Filho F, Coelho G, Cavalheiro S, Lyra MR, Zymberg ST (2011) Quality assessment of a new surgical simulator for neuroendoscopic training. Neurosurg Focus 30(4):1–6CrossRef Vaz-Guimarães Filho F, Coelho G, Cavalheiro S, Lyra MR, Zymberg ST (2011) Quality assessment of a new surgical simulator for neuroendoscopic training. Neurosurg Focus 30(4):1–6CrossRef
Metadata
Title
Neurosurgical training with simulators: a novel neuroendoscopy model
Authors
Sebastián G. Jaimovich
Marcela Bailez
Marcelo Asprea
Roberto Jaimovich
Publication date
01-02-2016
Publisher
Springer Berlin Heidelberg
Published in
Child's Nervous System / Issue 2/2016
Print ISSN: 0256-7040
Electronic ISSN: 1433-0350
DOI
https://doi.org/10.1007/s00381-015-2936-7

Other articles of this Issue 2/2016

Child's Nervous System 2/2016 Go to the issue