Skip to main content
Top
Published in: Child's Nervous System 10/2015

01-10-2015 | Special Annual Issue

Posterior fossa tumors in children: developmental anatomy and diagnostic imaging

Authors: Charles Raybaud, Vijay Ramaswamy, Michael D. Taylor, Suzanne Laughlin

Published in: Child's Nervous System | Issue 10/2015

Login to get access

Abstract

Introduction

Modern understanding of the relation between the mutated cancer stem cell and its site of origin and of its interaction with the tissue environment is enhancing the importance of developmental anatomy in the diagnostic assessment of posterior fossa tumors in children. The aim of this review is to show how MR imaging can improve on the exact identification of the tumors in the brainstem and in the vicinity of the fourth ventricle in children, using both structural imaging data and a precise topographical assessment guided by the developmental anatomy.

Results

The development of the hindbrain results from complex processes of brainstem segmentation, ventro-dorsal patterning, multiple germinative zones, and diverse migration pathways of the neural progenitors. Depending on their origin in the brainstem, gliomas may be infiltrative or not, as well as overwhelmingly malignant (pons), or mostly benign (cervicomedullary, medullo-pontine tegmental, gliomas of the cerebellar peduncles). In the vicinity of the fourth ventricles, the prognosis of the medulloblastomas (MB) correlates the molecular subtyping as well as the site of origin: WNT MB develop from the Wnt-expressing lower rhombic lip and have a good prognosis; SHH MB develop from the Shh-modulated cerebellar cortex with an intermediate prognosis (dependent on age); recurrences are local mostly. The poor prognosis group 3 MB is radiologically heterogeneous: some tumors present classic features but are juxtaventricular (rather than intraventricular); others have highly malignant features with a small principal tumor and an early dissemination. Group 4 MB has classic features, but characteristically usually does not enhance; dissemination is common. Although there is as yet no clear molecular subgrouping of the ependymomas, their sites of origin and their development can be clearly categorized, as most develop in an exophytic way from the ventricular surface of the medulla in clearly specific locations: the obex region with expansion in the cistern magna, or the lateral recess region with expansion in the CPA and prepontine cisterns (cerebellar ependymomas, and still more intra-brainstem ependymomas are rare). Finally, almost all cerebellar gliomas are pilocytic astrocytomas.

Conclusions

A developmental and anatomic approach to the posterior fossa tumors in children (together with diffusion imaging data) provides a reliable pre-surgical identification of the tumor and of its aggressiveness.
Literature
1.
go back to reference Boydston WR, Sanford RA, Muhlbauer MS, et al. (1991-1992) Glioma of the tectum and periaqueductal region of the mesencephalon. Pediatr Neurosurg 17:234–238 Boydston WR, Sanford RA, Muhlbauer MS, et al. (1991-1992) Glioma of the tectum and periaqueductal region of the mesencephalon. Pediatr Neurosurg 17:234–238
2.
go back to reference Broniscer A, Laningham FH, Kocak M, et al. (2006) Intratumoral hemorrhage among children with newly diagnosed, diffuse brainstem glioma. Cancer 106:1364–1371CrossRefPubMed Broniscer A, Laningham FH, Kocak M, et al. (2006) Intratumoral hemorrhage among children with newly diagnosed, diffuse brainstem glioma. Cancer 106:1364–1371CrossRefPubMed
3.
go back to reference Cambronero F, Puelles L (2000) Posterocaudal nuclear relationships in the avian medulla oblongata: a fate map with quail chick chimeras. J Comp Neurol 427:522–545CrossRefPubMed Cambronero F, Puelles L (2000) Posterocaudal nuclear relationships in the avian medulla oblongata: a fate map with quail chick chimeras. J Comp Neurol 427:522–545CrossRefPubMed
4.
go back to reference Conway AE, Reddick WE, Yuan Y, et al. (2014) “Occult” post-contrast signal enhancement in pediatric diffuse intrinsic pontine glioma is the MRI marker of angiogenesis? Neuroradiology 56(5):405–412PubMedCentralCrossRefPubMed Conway AE, Reddick WE, Yuan Y, et al. (2014) “Occult” post-contrast signal enhancement in pediatric diffuse intrinsic pontine glioma is the MRI marker of angiogenesis? Neuroradiology 56(5):405–412PubMedCentralCrossRefPubMed
5.
go back to reference Curless RC, Bowen BC, Pattany PM, et al. (2002) Magnetic resonance spectroscopy in childhood brainstem tumors. Pediatr Neurol 26:374–378CrossRefPubMed Curless RC, Bowen BC, Pattany PM, et al. (2002) Magnetic resonance spectroscopy in childhood brainstem tumors. Pediatr Neurol 26:374–378CrossRefPubMed
6.
go back to reference Dağlioğlu E, Çataltepe O, Akalan N (2003) Tectal gliomas in children: the implications for natural history and management strategy. Pediatr Neurosurg 38:223–231CrossRefPubMed Dağlioğlu E, Çataltepe O, Akalan N (2003) Tectal gliomas in children: the implications for natural history and management strategy. Pediatr Neurosurg 38:223–231CrossRefPubMed
7.
go back to reference Epstein F, Wisoff J (1987) Intraaxial tumors of the cervicomedullary junction. J Neurosurg 67:483–487CrossRefPubMed Epstein F, Wisoff J (1987) Intraaxial tumors of the cervicomedullary junction. J Neurosurg 67:483–487CrossRefPubMed
10.
go back to reference Gilbertson RJ, Gutmann DH (2007) Tumorigenesis in the brain: location, location, location. Cancer Res 67(12):5579–5582CrossRefPubMed Gilbertson RJ, Gutmann DH (2007) Tumorigenesis in the brain: location, location, location. Cancer Res 67(12):5579–5582CrossRefPubMed
11.
go back to reference Godfraind C, Kaczmarska J, Kocak M, et al. (2012) Distinct disease-risk groups in pediatric supratentorial and posterior fossa ependymomas. Acta Neuropathol 124(2):247–257PubMedCentralCrossRefPubMed Godfraind C, Kaczmarska J, Kocak M, et al. (2012) Distinct disease-risk groups in pediatric supratentorial and posterior fossa ependymomas. Acta Neuropathol 124(2):247–257PubMedCentralCrossRefPubMed
12.
go back to reference Ikezaki K, Matsushima T, Inoue T, et al. (1993) Correlation of microanatomical localization with postoperative survival in posterior fossa ependymomas. Neurosurgery 32(1):38–44CrossRefPubMed Ikezaki K, Matsushima T, Inoue T, et al. (1993) Correlation of microanatomical localization with postoperative survival in posterior fossa ependymomas. Neurosurgery 32(1):38–44CrossRefPubMed
13.
go back to reference Jandial R, U H, Levy ML, Snyder EY (2008) Brain tumor stem cells and the tumor microenvironment. Neurosurg Focus 24(3-4):E27CrossRefPubMed Jandial R, U H, Levy ML, Snyder EY (2008) Brain tumor stem cells and the tumor microenvironment. Neurosurg Focus 24(3-4):E27CrossRefPubMed
14.
go back to reference Konno H, Yamamoto T, Iwasaki Y, et al. (1985) A case of quadrigeminal hamartoma. Acta Neuropathol 68:155–159CrossRefPubMed Konno H, Yamamoto T, Iwasaki Y, et al. (1985) A case of quadrigeminal hamartoma. Acta Neuropathol 68:155–159CrossRefPubMed
15.
go back to reference Kool M, Korshunov A, Remke M, et al. (2012) Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data on WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol 123:473–484PubMedCentralCrossRefPubMed Kool M, Korshunov A, Remke M, et al. (2012) Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data on WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol 123:473–484PubMedCentralCrossRefPubMed
16.
go back to reference Koral K, Mathis D, Gimi B, et al. (2013) Common pediatric cerebellar tumors: correlation between cell density and apparent diffusion coefficient metrics. Radiology 268(2):532–537CrossRefPubMed Koral K, Mathis D, Gimi B, et al. (2013) Common pediatric cerebellar tumors: correlation between cell density and apparent diffusion coefficient metrics. Radiology 268(2):532–537CrossRefPubMed
17.
go back to reference Krieger MD, Blüml S, McComb JG (2003) Magnetic resonance spectroscopy of atypical diffuse pontine masses. Neurosurg Focus 15(1):E5CrossRefPubMed Krieger MD, Blüml S, McComb JG (2003) Magnetic resonance spectroscopy of atypical diffuse pontine masses. Neurosurg Focus 15(1):E5CrossRefPubMed
18.
go back to reference Laprie A, Pirzkall A, Haas-Kogan DA, et al. (2005) Longitudinal multivoxel MR spectroscopy study of pediatric diffuse brainstem glioma treated with radiotherapy. Int J Radiat Oncol Biol Phys 62:20–31CrossRefPubMed Laprie A, Pirzkall A, Haas-Kogan DA, et al. (2005) Longitudinal multivoxel MR spectroscopy study of pediatric diffuse brainstem glioma treated with radiotherapy. Int J Radiat Oncol Biol Phys 62:20–31CrossRefPubMed
19.
go back to reference Löbel U, Sedlacik J, Sabin ND, et al. (2010) Three-dimensional susceptibility-weighted imaging and two-dimensional T2*-weighted gradient-echo imaging of intratumoral hemorrhages in pediatric diffuse intrinsic pontine glioma. Neuroradiology 52:1167–1177PubMedCentralCrossRefPubMed Löbel U, Sedlacik J, Sabin ND, et al. (2010) Three-dimensional susceptibility-weighted imaging and two-dimensional T2*-weighted gradient-echo imaging of intratumoral hemorrhages in pediatric diffuse intrinsic pontine glioma. Neuroradiology 52:1167–1177PubMedCentralCrossRefPubMed
20.
go back to reference Löbel U, Sedlacik J, Reddick WE, et al. (2010) Quantitative diffusion-weighted and dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging analysis of T2 hypointense lesion components in pediatric diffuse intrinsic pontine glioma. AJNR Am J Neuroradiol 32(2):315–322PubMedCentralCrossRefPubMed Löbel U, Sedlacik J, Reddick WE, et al. (2010) Quantitative diffusion-weighted and dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging analysis of T2 hypointense lesion components in pediatric diffuse intrinsic pontine glioma. AJNR Am J Neuroradiol 32(2):315–322PubMedCentralCrossRefPubMed
21.
23.
go back to reference Marcorelles P, Fallet-Bianco C, Oury JF, et al. (2005) Fetal aqueductal glioneuronal hamartoma: a clinicopathological and physiopathological study of three cases. Clin Neuropathol 24:155–162PubMed Marcorelles P, Fallet-Bianco C, Oury JF, et al. (2005) Fetal aqueductal glioneuronal hamartoma: a clinicopathological and physiopathological study of three cases. Clin Neuropathol 24:155–162PubMed
25.
go back to reference Nakamura H, Watanabe Y (2005) Isthmus organizer and regionalization of the mesencephalon and metencephalon. Int J Dev Biol 49:231–235CrossRefPubMed Nakamura H, Watanabe Y (2005) Isthmus organizer and regionalization of the mesencephalon and metencephalon. Int J Dev Biol 49:231–235CrossRefPubMed
26.
go back to reference Northcott PA, Korshunov A, Witt H, et al. (2011) Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 29(11):1408–1414CrossRefPubMed Northcott PA, Korshunov A, Witt H, et al. (2011) Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 29(11):1408–1414CrossRefPubMed
27.
go back to reference Northcott PA, Korshunov A, Pfister SM, Taylor MD (2012) The clinical implications of medulloblastoma subgroups. Nat Rev Neurol 8:340–351CrossRefPubMed Northcott PA, Korshunov A, Pfister SM, Taylor MD (2012) The clinical implications of medulloblastoma subgroups. Nat Rev Neurol 8:340–351CrossRefPubMed
28.
29.
go back to reference Panigrahy A, Nelson Jr MD, Blüml S (2010) Magnetic resonance spectroscopy in pediatric neuroradiology: clinical and research applications. Pediatr Radiol 40(1):3–30CrossRefPubMed Panigrahy A, Nelson Jr MD, Blüml S (2010) Magnetic resonance spectroscopy in pediatric neuroradiology: clinical and research applications. Pediatr Radiol 40(1):3–30CrossRefPubMed
30.
go back to reference Pajtler K, Witt H, Sill M et al. The ependymoma classification. Cancer Cell 2015 (accepted). Pajtler K, Witt H, Sill M et al. The ependymoma classification. Cancer Cell 2015 (accepted).
31.
go back to reference Perreault S, Ramaswamy V, Achrol AS, et al. (2014) MRI surrogates for molecular subgroups of medulloblastoma. AJNR Am J Neuroradiol 35:1263–1269CrossRefPubMed Perreault S, Ramaswamy V, Achrol AS, et al. (2014) MRI surrogates for molecular subgroups of medulloblastoma. AJNR Am J Neuroradiol 35:1263–1269CrossRefPubMed
32.
go back to reference Raghunathan A, Wani K, Armstrong TS, et al. (2013) Histological predictors of outcome in ependymoma are dependent on anatomic site within the central nervous system. Brain Pathol 23:584–594CrossRefPubMed Raghunathan A, Wani K, Armstrong TS, et al. (2013) Histological predictors of outcome in ependymoma are dependent on anatomic site within the central nervous system. Brain Pathol 23:584–594CrossRefPubMed
33.
go back to reference Ramaswamy V, Remke M, Bouffet E, et al. (2013) Recurrence patterns across medulloblastoma subgroups: an integrated clinical and molecular analysis. Lancet Oncol 14(12):1200–1207PubMedCentralCrossRefPubMed Ramaswamy V, Remke M, Bouffet E, et al. (2013) Recurrence patterns across medulloblastoma subgroups: an integrated clinical and molecular analysis. Lancet Oncol 14(12):1200–1207PubMedCentralCrossRefPubMed
34.
go back to reference Ramaswamy V, Remke M, Shih D, et al. (2014) Duration of the pre-diagnostic interval in medulloblastoma is subgroup dependent. Pediatr Blood Cancer 61(7):1190–1194CrossRefPubMed Ramaswamy V, Remke M, Shih D, et al. (2014) Duration of the pre-diagnostic interval in medulloblastoma is subgroup dependent. Pediatr Blood Cancer 61(7):1190–1194CrossRefPubMed
36.
go back to reference Rauscher A, Sedlacik J, Barth M, et al. (2005) Noninvasive assessment of vascular architecture and function during modulated blood oxygenation using susceptibility-weighted magnetic resonance imaging. Magn Reson Med 54:87–95CrossRefPubMed Rauscher A, Sedlacik J, Barth M, et al. (2005) Noninvasive assessment of vascular architecture and function during modulated blood oxygenation using susceptibility-weighted magnetic resonance imaging. Magn Reson Med 54:87–95CrossRefPubMed
37.
go back to reference Robertson PL, Murazko KM, Brunberg JA, et al. (1995) Pediatric midbrain tumors: a benign subgroup of brainstem gliomas. Pediatr Neurosurg 22:65–73CrossRefPubMed Robertson PL, Murazko KM, Brunberg JA, et al. (1995) Pediatric midbrain tumors: a benign subgroup of brainstem gliomas. Pediatr Neurosurg 22:65–73CrossRefPubMed
38.
go back to reference Rodriguez Gutierrez D, Awwad A, Meijer L, et al. (2014) Metrics and textural features of MRI diffusion to improve classification of pediatric posterior fossa tumors. AJNR Am J Neuroradiol 35:1009–1015CrossRefPubMed Rodriguez Gutierrez D, Awwad A, Meijer L, et al. (2014) Metrics and textural features of MRI diffusion to improve classification of pediatric posterior fossa tumors. AJNR Am J Neuroradiol 35:1009–1015CrossRefPubMed
40.
go back to reference Sanford RA, Bebin J, Smith WR (1982) Pencil glioma of the aqueduct of Sylvius. J Neurosurg 57:690–696CrossRefPubMed Sanford RA, Bebin J, Smith WR (1982) Pencil glioma of the aqueduct of Sylvius. J Neurosurg 57:690–696CrossRefPubMed
41.
go back to reference Sehgal V, Delproposto Z, Haacke EM, et al. (2005) Clinical applications of neuroimaging with susceptibility-weighted imaging. J Magn Reson Imaging 22:439–450CrossRefPubMed Sehgal V, Delproposto Z, Haacke EM, et al. (2005) Clinical applications of neuroimaging with susceptibility-weighted imaging. J Magn Reson Imaging 22:439–450CrossRefPubMed
42.
go back to reference Sehgal V, Delproposto Z, Haddar D, et al. (2006) Susceptibility-weighted imaging to visualize blood products and improve tumor contrast in the study of brain masses. J Magn Reson Imaging 24:41–51CrossRefPubMed Sehgal V, Delproposto Z, Haddar D, et al. (2006) Susceptibility-weighted imaging to visualize blood products and improve tumor contrast in the study of brain masses. J Magn Reson Imaging 24:41–51CrossRefPubMed
43.
go back to reference Sgaier SK, Millet S, Villanueva MP, et al. (2005) Morphogenetic and cellular movements that shape the mouse cerebellum; insights from genetic fate mapping. Neuron 45(1):27–40PubMed Sgaier SK, Millet S, Villanueva MP, et al. (2005) Morphogenetic and cellular movements that shape the mouse cerebellum; insights from genetic fate mapping. Neuron 45(1):27–40PubMed
44.
45.
go back to reference Taylor MD, Poppleton H, Fuller C, et al. (2005) Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8:323–335CrossRefPubMed Taylor MD, Poppleton H, Fuller C, et al. (2005) Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8:323–335CrossRefPubMed
46.
47.
go back to reference ten Donkelaar HJ, Lammens M, Cruysberg JRM, Cremers CWJR (2006) Development and developmental disorders of the cranial nerves. In: ten Donkelaar HJ, Lammens M, Hori A (eds) Clinical Neuroembryology. Springer-Verlag, Berlin Heidelberg, pp. 274–279CrossRef ten Donkelaar HJ, Lammens M, Cruysberg JRM, Cremers CWJR (2006) Development and developmental disorders of the cranial nerves. In: ten Donkelaar HJ, Lammens M, Hori A (eds) Clinical Neuroembryology. Springer-Verlag, Berlin Heidelberg, pp. 274–279CrossRef
48.
go back to reference Ternier J, Wray A, Puget S, et al. (2006) Tectal plate lesions in children. J Neurosurg 104(6 Suppl Pediatrics):369–373PubMed Ternier J, Wray A, Puget S, et al. (2006) Tectal plate lesions in children. J Neurosurg 104(6 Suppl Pediatrics):369–373PubMed
49.
go back to reference Tihan T, Zhou T, Holmes E, et al. (2008) The prognostic value of histological grading of posterior fossa ependymomas in children: a children’s oncology group study and a review of prognostic factors. Mod Pathol 21:165–177PubMed Tihan T, Zhou T, Holmes E, et al. (2008) The prognostic value of histological grading of posterior fossa ependymomas in children: a children’s oncology group study and a review of prognostic factors. Mod Pathol 21:165–177PubMed
50.
go back to reference Tümpel S, Wiedemann KR (2009) Hox genes and segmentation of the vertebrate hindbrain. Curr Top Dev Biol 88:103–137CrossRefPubMed Tümpel S, Wiedemann KR (2009) Hox genes and segmentation of the vertebrate hindbrain. Curr Top Dev Biol 88:103–137CrossRefPubMed
51.
go back to reference U-King-Im JM, Taylor MD, Raybaud C (2010) Posterior fossa ependymomas: new radiological classification with surgical correlation. Childs Nerv Syst 26:1765–1772CrossRefPubMed U-King-Im JM, Taylor MD, Raybaud C (2010) Posterior fossa ependymomas: new radiological classification with surgical correlation. Childs Nerv Syst 26:1765–1772CrossRefPubMed
52.
go back to reference Vandertop WP, Hoffman HJ, Drake JM, et al. (1992) Focal midbrain tumors in children. Neurosurgery 31:186–194CrossRefPubMed Vandertop WP, Hoffman HJ, Drake JM, et al. (1992) Focal midbrain tumors in children. Neurosurgery 31:186–194CrossRefPubMed
53.
go back to reference Witt H, Mack SC, Ryzhova M, et al. (2011) Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell 20:143–157PubMedCentralCrossRefPubMed Witt H, Mack SC, Ryzhova M, et al. (2011) Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell 20:143–157PubMedCentralCrossRefPubMed
54.
go back to reference Witt H, Korshunov A, Pfister SM, Milde T (2012) Molecular approaches to ependymoma: the next step(s). Curr Opin Neurol 25(6):745–750CrossRefPubMed Witt H, Korshunov A, Pfister SM, Milde T (2012) Molecular approaches to ependymoma: the next step(s). Curr Opin Neurol 25(6):745–750CrossRefPubMed
55.
go back to reference Wullimann MF, Mueller T, Distel M, et al. (2011) The long adventurous journey of rhombic lip cells in jawed vertebrate: a comparative development analysis. Front Neuroanat 5:27PubMedCentralCrossRefPubMed Wullimann MF, Mueller T, Distel M, et al. (2011) The long adventurous journey of rhombic lip cells in jawed vertebrate: a comparative development analysis. Front Neuroanat 5:27PubMedCentralCrossRefPubMed
56.
go back to reference Xu Q, Wilkinson DG (2013) Boundary formation in the development of the vertebrate hindbrain. WIREs Dev Biol 2:735–745CrossRef Xu Q, Wilkinson DG (2013) Boundary formation in the development of the vertebrate hindbrain. WIREs Dev Biol 2:735–745CrossRef
57.
go back to reference Yeom KW, Mobley BC, Lober MR, et al. (2013) Distinctive MRI features of pediatric medulloblastoma subtypes. AJNR Am J Neuroradiol 200:895–903 Yeom KW, Mobley BC, Lober MR, et al. (2013) Distinctive MRI features of pediatric medulloblastoma subtypes. AJNR Am J Neuroradiol 200:895–903
58.
go back to reference Zhukova N, Ramaswamy V, Remke M, et al. (2013) Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. Clin Oncol 31(23):2927–2935CrossRef Zhukova N, Ramaswamy V, Remke M, et al. (2013) Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. Clin Oncol 31(23):2927–2935CrossRef
Metadata
Title
Posterior fossa tumors in children: developmental anatomy and diagnostic imaging
Authors
Charles Raybaud
Vijay Ramaswamy
Michael D. Taylor
Suzanne Laughlin
Publication date
01-10-2015
Publisher
Springer Berlin Heidelberg
Published in
Child's Nervous System / Issue 10/2015
Print ISSN: 0256-7040
Electronic ISSN: 1433-0350
DOI
https://doi.org/10.1007/s00381-015-2834-z

Other articles of this Issue 10/2015

Child's Nervous System 10/2015 Go to the issue