Skip to main content
Top
Published in: Heart and Vessels 12/2019

01-12-2019 | Diuretics | Original Article

Acetazolamide as a potent chloride-regaining diuretic: short- and long-term effects, and its pharmacologic role under the ‘chloride theory’ for heart failure pathophysiology

Author: Hajime Kataoka

Published in: Heart and Vessels | Issue 12/2019

Login to get access

Abstract

According to the “chloride theory” for heart failure (HF) pathophysiology, manipulation of the serum chloride concentration is an important therapeutic target. This study determined the short- and long-term effects of acetazolamide (Diamox), a potential chloride-regaining diuretic, on peripheral blood, serum electrolytes, and renal function. Effects of low-dose Diamox (250–500 mg/day) were evaluated in 30 HF patients for whom Diamox was added as de-novo/add-on decongestion therapy for acutely worsening HF (n = 18) or as modification therapy for serum hypochloremia in stable HF ( < 100 mEq/L; n = 12). Peripheral hematologic tests were performed at baseline, and at short- ( ≤ 10 days) and long-term ( ~ 60 days) time-points. In all 30 study patients of both groups, the serum chloride concentration increased in the short-term and even further over the long-term. The serum potassium concentration constantly decreased throughout the study period. Both the blood urea nitrogen and serum creatinine concentrations increased in the short-term, but returned to baseline levels over the long-term. Responders to Diamox (n = 13; defined by HF resolution and body weight loss ≥ 1 kg) in the decongestion group exhibited reduced serum b-type natriuretic peptide levels and a markedly increased serum chloride concentration, but the hemoglobin/hematocrit and serum creatinine concentrations did not change after treatment. In conclusion, acetazolamide is a potent candidate “chloride-regaining diuretic” for treating HF patients under the “chloride theory”. Its effect to enhance the serum chloride concentration occurred within 10 days and persisted for at least ~ 60 days. Plasma volume and renal function were preserved under adequate diuretic treatment with acetazolamide.
Literature
1.
go back to reference Cody RJ, Covit AB, Schaer GL, Laragh JH, Sealey JE, Feldschuh J (1986) Sodium and water balance in chronic congestive heart failure. J Clin Invest 77:1441–1452PubMedPubMedCentral Cody RJ, Covit AB, Schaer GL, Laragh JH, Sealey JE, Feldschuh J (1986) Sodium and water balance in chronic congestive heart failure. J Clin Invest 77:1441–1452PubMedPubMedCentral
2.
go back to reference Volpe M, Tritto C, DeLuca N, Rubattu S, Rao MAE, Lamenza F, Mirante A, Enea I, Rendina V, Mele AF, Trimarco B, Condorelli M (1993) Abnormalities of sodium handling and of cardiovascular adaptations during high salt diet in patients with mild heart failure. Circulation 88(1):1620–1627PubMed Volpe M, Tritto C, DeLuca N, Rubattu S, Rao MAE, Lamenza F, Mirante A, Enea I, Rendina V, Mele AF, Trimarco B, Condorelli M (1993) Abnormalities of sodium handling and of cardiovascular adaptations during high salt diet in patients with mild heart failure. Circulation 88(1):1620–1627PubMed
3.
go back to reference Sica DA (2006) Sodium and water retention in heart failure and diuretic therapy: basic mechanisms. Cleve Clin J Med 73(suppl 2):S2–S7PubMed Sica DA (2006) Sodium and water retention in heart failure and diuretic therapy: basic mechanisms. Cleve Clin J Med 73(suppl 2):S2–S7PubMed
4.
go back to reference Testani JM, Hanberg JS, Arroyo JP, Brisco MA, ter Maaten JM, Wilson FP, Bellumkonda L, Jacoby D, Tang WHW, Parikh CR (2016) Hypochloraemia is strongly and independently associated with mortality in patients with chronic heart failure. Eur J Heart Fail 18:660–668PubMedPubMedCentral Testani JM, Hanberg JS, Arroyo JP, Brisco MA, ter Maaten JM, Wilson FP, Bellumkonda L, Jacoby D, Tang WHW, Parikh CR (2016) Hypochloraemia is strongly and independently associated with mortality in patients with chronic heart failure. Eur J Heart Fail 18:660–668PubMedPubMedCentral
5.
go back to reference Hanberg JS, Rao V, ter Maaten JM, Laur O, Brisco MA, Wilson FP, Grodin JL, Assefa M, Broughton JS, Planavsky NJ, Ahmad T, Bellumkonda L, Tang WHW, Parikh CR, Testani JM (2016) Hypochloremia and diuretic resistance in heart failure: mechanistic insights. Circ Heart Fail 9:e003180PubMed Hanberg JS, Rao V, ter Maaten JM, Laur O, Brisco MA, Wilson FP, Grodin JL, Assefa M, Broughton JS, Planavsky NJ, Ahmad T, Bellumkonda L, Tang WHW, Parikh CR, Testani JM (2016) Hypochloremia and diuretic resistance in heart failure: mechanistic insights. Circ Heart Fail 9:e003180PubMed
6.
go back to reference Kataoka H (2017) Vascular expansion during worsening of heart failure: effects on clinical features and its determinants. Int J Cardiol 230:556–561PubMed Kataoka H (2017) Vascular expansion during worsening of heart failure: effects on clinical features and its determinants. Int J Cardiol 230:556–561PubMed
7.
go back to reference Kataoka H (2019) Biochemical determinants of changes in plasma volume after decongestion therapy for worsening heart failure. J Card Fail 25:213–217PubMed Kataoka H (2019) Biochemical determinants of changes in plasma volume after decongestion therapy for worsening heart failure. J Card Fail 25:213–217PubMed
8.
go back to reference Kataoka H (2017) Proposal for heart failure progression based on the “chloride theory”: worsening heart failure with increased vs. non-increased serum chloride concentration. ESC Heart Fail 4:623–631PubMedPubMedCentral Kataoka H (2017) Proposal for heart failure progression based on the “chloride theory”: worsening heart failure with increased vs. non-increased serum chloride concentration. ESC Heart Fail 4:623–631PubMedPubMedCentral
9.
go back to reference Kataoka H (2017) The “chloride theory”, a unifying hypothesis for renal handling and body fluid distribution in heart failure pathophysiology. Med Hypotheses 104:170–173PubMed Kataoka H (2017) The “chloride theory”, a unifying hypothesis for renal handling and body fluid distribution in heart failure pathophysiology. Med Hypotheses 104:170–173PubMed
10.
go back to reference Hilton JG, Kalinsky H (1951) Potentiation of diuretic action of mercuhydrin by ammonium chloride. J Clin Invest 30:1105–1110PubMedPubMedCentral Hilton JG, Kalinsky H (1951) Potentiation of diuretic action of mercuhydrin by ammonium chloride. J Clin Invest 30:1105–1110PubMedPubMedCentral
11.
go back to reference Friedberg C, Taymor R, Minor JB, Halpern M (1953) The use of Diamox, a carbonic anhydrase inhibitor, as an oral diuretic in patients with congestive heart failure. N Engl J Med 248:883–889PubMed Friedberg C, Taymor R, Minor JB, Halpern M (1953) The use of Diamox, a carbonic anhydrase inhibitor, as an oral diuretic in patients with congestive heart failure. N Engl J Med 248:883–889PubMed
12.
go back to reference Leaf A, Schwartz WB, Relman AS (1954) Oral administration of a potent carbonic anhydrase inhibitor (“Diamox”): I. Changes in electrolyte and acid-base balance. N Engl J Med 250:759–764PubMed Leaf A, Schwartz WB, Relman AS (1954) Oral administration of a potent carbonic anhydrase inhibitor (“Diamox”): I. Changes in electrolyte and acid-base balance. N Engl J Med 250:759–764PubMed
13.
go back to reference Relman AS, Leaf A, Schwartz WB (1954) Oral administration of a potent carbonic anhydrase inhibitor (“Diamox”): II. Its use as a diuretic in patients with severe congestive heart failure. N Engl J Med 250:800–804PubMed Relman AS, Leaf A, Schwartz WB (1954) Oral administration of a potent carbonic anhydrase inhibitor (“Diamox”): II. Its use as a diuretic in patients with severe congestive heart failure. N Engl J Med 250:800–804PubMed
14.
go back to reference Rubin AL, Thompson HG Jr, Braveman WS, Luckey EH (1955) The management of refractory edema in heart failure. Ann Intern Med 42:358–368PubMed Rubin AL, Thompson HG Jr, Braveman WS, Luckey EH (1955) The management of refractory edema in heart failure. Ann Intern Med 42:358–368PubMed
15.
go back to reference Khan MI (1980) Treatment of refractory congestive heart failure and normokalemic hypochloremic alkalosis with acetazolamide and spironolactone. Can Med Assoc J 123:883–887PubMedPubMedCentral Khan MI (1980) Treatment of refractory congestive heart failure and normokalemic hypochloremic alkalosis with acetazolamide and spironolactone. Can Med Assoc J 123:883–887PubMedPubMedCentral
16.
go back to reference Caramelo C, Albalate M, Tejedor A, Alcázar TR, Baldoví S, Pérez AG, Marín M (2008) Actuality of the use of acetazolamide as a diuretic: usefulness in refractory edema and in aldosterone-antagonist-related hyperkalemia. Nefrologia 28:234–238PubMed Caramelo C, Albalate M, Tejedor A, Alcázar TR, Baldoví S, Pérez AG, Marín M (2008) Actuality of the use of acetazolamide as a diuretic: usefulness in refractory edema and in aldosterone-antagonist-related hyperkalemia. Nefrologia 28:234–238PubMed
17.
go back to reference Kassamali R, Sica DA (2011) Acetazolamide: a forgotten diuretic agent. Cardiol in Rev 19:276–278 Kassamali R, Sica DA (2011) Acetazolamide: a forgotten diuretic agent. Cardiol in Rev 19:276–278
18.
go back to reference Kataoka H (2018) Treatment of hypochloremia with acetazolamide in an advanced heart failure patient and importance of monitoring urinary electrolytes. J Card Cases 17:80–84 Kataoka H (2018) Treatment of hypochloremia with acetazolamide in an advanced heart failure patient and importance of monitoring urinary electrolytes. J Card Cases 17:80–84
19.
go back to reference Kataoka H (2018) Comparison of changes in the plasma volume and renal function between acetazolamide vs conventional diuretics: understanding their mechanical differences according to the chloride theory. Eur Heart J 39:40–41 (abstract) Kataoka H (2018) Comparison of changes in the plasma volume and renal function between acetazolamide vs conventional diuretics: understanding their mechanical differences according to the chloride theory. Eur Heart J 39:40–41 (abstract)
20.
go back to reference Ghali JK, Tam SW (2010) The critical link of hypervolemia and hyponatremia in heart failure and the potential role of arginine vasopressin antagonists. J Cardiac Fail 16:419–431 Ghali JK, Tam SW (2010) The critical link of hypervolemia and hyponatremia in heart failure and the potential role of arginine vasopressin antagonists. J Cardiac Fail 16:419–431
21.
go back to reference Kataoka H, Takada S (2000) The role of thoracic ultrasonography for evaluation of patients with decompensated chronic heart failure. J Am Coll Cardiol 35:1638–1646PubMed Kataoka H, Takada S (2000) The role of thoracic ultrasonography for evaluation of patients with decompensated chronic heart failure. J Am Coll Cardiol 35:1638–1646PubMed
22.
go back to reference Kataoka H (2012) Ultrasound pleural effusion sign as a useful marker for identifying heart failure worsening in established heart failure patients during follow-up. Congest Heart Fail 18:272–277PubMed Kataoka H (2012) Ultrasound pleural effusion sign as a useful marker for identifying heart failure worsening in established heart failure patients during follow-up. Congest Heart Fail 18:272–277PubMed
23.
go back to reference Udelson JE, Orlandi C, Ouyang J, Krasa H, Zimmer CA, Frivold G, Haught H, Meymandi S, Macarie C, Raef D, Wedge P, Konstam MA, Gheorghiade M (2008) Acute hemodynamic effects of tolvaptan, a vasopressin V2 receptor blocker, in patients with symptomatic heart failure and systolic dysfunction: an international, multicenter, randomized, placebo-controlled trial. J Am Coll Cardiol 52:1540–1545PubMed Udelson JE, Orlandi C, Ouyang J, Krasa H, Zimmer CA, Frivold G, Haught H, Meymandi S, Macarie C, Raef D, Wedge P, Konstam MA, Gheorghiade M (2008) Acute hemodynamic effects of tolvaptan, a vasopressin V2 receptor blocker, in patients with symptomatic heart failure and systolic dysfunction: an international, multicenter, randomized, placebo-controlled trial. J Am Coll Cardiol 52:1540–1545PubMed
24.
go back to reference Kataoka H, Yamasaki Y (2016) Strategy for monitoring decompensated heart failure treated by an oral vasopressin antagonist with special reference to the role of serum chloride: a case report. J Card Cases 14:185–188 Kataoka H, Yamasaki Y (2016) Strategy for monitoring decompensated heart failure treated by an oral vasopressin antagonist with special reference to the role of serum chloride: a case report. J Card Cases 14:185–188
25.
go back to reference ter Maaten JM, Valente MA, Damman K, Hillege HL, Navis G, Voors AA (2015) Diuretic response in acute heart failure: pathophysiology, evaluation, and therapy. Nat Rev Cardiol 12:184–192PubMed ter Maaten JM, Valente MA, Damman K, Hillege HL, Navis G, Voors AA (2015) Diuretic response in acute heart failure: pathophysiology, evaluation, and therapy. Nat Rev Cardiol 12:184–192PubMed
26.
go back to reference Pitt B, Ferreira JP, Zannad F (2017) Mineralocorticoid receptor antagonists in patients with heart failure: current experience and future perspectives. Eur Heart J Cardiovasc Pharmacother 3:48–57PubMed Pitt B, Ferreira JP, Zannad F (2017) Mineralocorticoid receptor antagonists in patients with heart failure: current experience and future perspectives. Eur Heart J Cardiovasc Pharmacother 3:48–57PubMed
27.
go back to reference Ferreira JP, Rossignol P, Machu J-L, Sharma A, Girerd N, Anker SD, Cleland JG, Dickstein K, Filippatos G, Hillege HL, Lang CC, ter Maaten J, Metra M, Ng L, Ponikowski P, Samani NJ, van Veldhuisen DJ, Zwinderman AH, Voors A, Zannad F (2017) Mineralocorticoid receptor antagonist pattern of use in heart failure with reduced ejection fraction: findings from BIOSTAT-CHF. Eur J Heart Fail 19:1284–1293PubMed Ferreira JP, Rossignol P, Machu J-L, Sharma A, Girerd N, Anker SD, Cleland JG, Dickstein K, Filippatos G, Hillege HL, Lang CC, ter Maaten J, Metra M, Ng L, Ponikowski P, Samani NJ, van Veldhuisen DJ, Zwinderman AH, Voors A, Zannad F (2017) Mineralocorticoid receptor antagonist pattern of use in heart failure with reduced ejection fraction: findings from BIOSTAT-CHF. Eur J Heart Fail 19:1284–1293PubMed
28.
go back to reference Grodin JL (2016) Pharmacologic approaches to electrolyte abnormalities in heart failure. Curr Heart Fail Rep 13:181–189PubMed Grodin JL (2016) Pharmacologic approaches to electrolyte abnormalities in heart failure. Curr Heart Fail Rep 13:181–189PubMed
29.
go back to reference Urso C, Brucculeri S, Caimi G (2015) Acid-base and electrolyte abnormalities in heart failure: pathophysiology and implications. Heart Fail Rev 20:493–503PubMedPubMedCentral Urso C, Brucculeri S, Caimi G (2015) Acid-base and electrolyte abnormalities in heart failure: pathophysiology and implications. Heart Fail Rev 20:493–503PubMedPubMedCentral
31.
go back to reference Yunos NM, Bellomo R, Hegarty C, Story D, Colin LH, Bailey M (2012) Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA 308:1566–1572PubMed Yunos NM, Bellomo R, Hegarty C, Story D, Colin LH, Bailey M (2012) Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA 308:1566–1572PubMed
32.
go back to reference Thongprayoon C, Cheungpasitporn W, Cheng Z, Qian Q (2017) Chloride alterations in hospitalized patients: prevalence and outcome significance. PLoS ONE 12:e0174430PubMedPubMedCentral Thongprayoon C, Cheungpasitporn W, Cheng Z, Qian Q (2017) Chloride alterations in hospitalized patients: prevalence and outcome significance. PLoS ONE 12:e0174430PubMedPubMedCentral
33.
go back to reference Tojima H, Kunitomo F, Kimura H, Tatsumi K, Kuriyama T, Honda Y (1988) Effects of acetazolamide in patients with the sleep apnea syndrome. Thorax 43:113–119PubMedPubMedCentral Tojima H, Kunitomo F, Kimura H, Tatsumi K, Kuriyama T, Honda Y (1988) Effects of acetazolamide in patients with the sleep apnea syndrome. Thorax 43:113–119PubMedPubMedCentral
34.
go back to reference Javaheri S (2006) Acetazolamide improves central sleep apnea in heart failure: a double-blind, prospective study. Am J Respir Crit Care Med 173:234–237PubMed Javaheri S (2006) Acetazolamide improves central sleep apnea in heart failure: a double-blind, prospective study. Am J Respir Crit Care Med 173:234–237PubMed
35.
go back to reference Cowie MR, Gallagher AM (2017) Sleep disordered breathing and heart failure: what does the future hold? JACC Heart Fail 5:715–723PubMed Cowie MR, Gallagher AM (2017) Sleep disordered breathing and heart failure: what does the future hold? JACC Heart Fail 5:715–723PubMed
37.
go back to reference Shirakabe A, Hata N, Kobayashi N, Shinada T, Tomita K, Tsurumi M, Matsushita M, Okazaki H, Yamamoto Y, Yokoyama S, Asai K, Mizuno K (2012) Clinical significance of acid-base balance in an emergency setting in patients with acute heart failure. J Cardiol 60:288–294PubMed Shirakabe A, Hata N, Kobayashi N, Shinada T, Tomita K, Tsurumi M, Matsushita M, Okazaki H, Yamamoto Y, Yokoyama S, Asai K, Mizuno K (2012) Clinical significance of acid-base balance in an emergency setting in patients with acute heart failure. J Cardiol 60:288–294PubMed
38.
go back to reference Otaki Y, Watanabe T, Takahashi H, Hasegawa H, Honda S, Funayama A, Netsu S, Ishino M, Arimoto T, Shishido T, Miyashita T, Miyamoto T, Konta T, Kubota I (2013) Acidic urine is associated with poor prognosis in patients with chronic heart failure. Heart Vessels 28:735–741PubMed Otaki Y, Watanabe T, Takahashi H, Hasegawa H, Honda S, Funayama A, Netsu S, Ishino M, Arimoto T, Shishido T, Miyashita T, Miyamoto T, Konta T, Kubota I (2013) Acidic urine is associated with poor prognosis in patients with chronic heart failure. Heart Vessels 28:735–741PubMed
39.
go back to reference Kataoka H (2018) Vasopressin antagonist-like effect of acetazolamide in a heart failure patient: a case report. Eur Heart J Case Rep 2(3):1–5 Kataoka H (2018) Vasopressin antagonist-like effect of acetazolamide in a heart failure patient: a case report. Eur Heart J Case Rep 2(3):1–5
40.
go back to reference Vogiatzis I, Koulouris E, Sidiropoulos A, Giannakoulas C (2013) Acute pulmonary edema after a single oral dose of acetazolamide. Hippokratia 17:177–179PubMedPubMedCentral Vogiatzis I, Koulouris E, Sidiropoulos A, Giannakoulas C (2013) Acute pulmonary edema after a single oral dose of acetazolamide. Hippokratia 17:177–179PubMedPubMedCentral
41.
go back to reference Zimmermann S, Achenbach S, Wolf M, Janka R, Marwan M, Mahler V (2014) Recurrent shock and pulmonary edema due to acetazolamide medication after cataract surgery. Heart Lung 43:124–126PubMed Zimmermann S, Achenbach S, Wolf M, Janka R, Marwan M, Mahler V (2014) Recurrent shock and pulmonary edema due to acetazolamide medication after cataract surgery. Heart Lung 43:124–126PubMed
42.
go back to reference Maisey DN, Brown RD (1981) Acetazolamide and symptomatic metabolic acidosis in mild renal failure. Br Med J 283:1527–1528 Maisey DN, Brown RD (1981) Acetazolamide and symptomatic metabolic acidosis in mild renal failure. Br Med J 283:1527–1528
43.
go back to reference Margo CE (1986) Acetazolamide and advanced liver disease. Am J Ophthalmol 101:611–612PubMed Margo CE (1986) Acetazolamide and advanced liver disease. Am J Ophthalmol 101:611–612PubMed
Metadata
Title
Acetazolamide as a potent chloride-regaining diuretic: short- and long-term effects, and its pharmacologic role under the ‘chloride theory’ for heart failure pathophysiology
Author
Hajime Kataoka
Publication date
01-12-2019
Publisher
Springer Japan
Published in
Heart and Vessels / Issue 12/2019
Print ISSN: 0910-8327
Electronic ISSN: 1615-2573
DOI
https://doi.org/10.1007/s00380-019-01433-x

Other articles of this Issue 12/2019

Heart and Vessels 12/2019 Go to the issue