Skip to main content
Top
Published in: Heart and Vessels 8/2019

01-08-2019 | Atrial Fibrillation | Short Communication

Liraglutide suppresses atrial electrophysiological changes

Authors: Hironori Nakamura, Shinichi Niwano, Hiroe Niwano, Hidehira Fukaya, Masami Murakami, Jun Kishihara, Akira Satoh, Tomoharu Yoshizawa, Naruya Ishizue, Tazuru Igarashi, Tamami Fujiishi, Junya Ako

Published in: Heart and Vessels | Issue 8/2019

Login to get access

Abstract

We have shown that a dipeptidyl peptidase 4 (DPP-4) inhibitor suppresses atrial remodeling in a canine atrial fibrillation (AF) model. Glucagon-like peptide-1 (GLP-1) is increased by DPP-4 inhibitors. However, it is not clear whether GLP-1 is involved in the suppression of atrial remodeling. In this study, we evaluated the effect of liraglutide (a GLP-1 analog) on atrial electrophysiological changes using the same canine AF model. We established a canine AF model using continuous 3-week rapid atrial stimulation in seven beagle dogs divided into two groups: a liraglutide group with four dogs (3-week atrial pacing with liraglutide (150 µg/kg/day) administration) and a pacing control group with three dogs (3-week pacing without any medicine). We evaluated the atrial effective refractory period (AERP), conduction velocity (CV), and AF inducibility every week during the protocol using implanted epicardial wires against the surfaces of both atria. In the pacing control group, the AERP was gradually shortened and the CV was decreased along the time course. In the liraglutide group, the AERP was similarly shortened as in the pacing control group (94 ± 4% versus 85 ± 2%, respectively; p = 0.5926), but the CV became significantly higher than that in the pacing control group after 2 and 3 weeks (95 ± 4 versus 83 ± 5%, respectively; p = 0.0339). The AF inducibility was gradually increased in the pacing control group, but it was suppressed in the liraglutide group (5 ± 9% versus 73 ± 5%; p = 0.0262). Liraglutide suppressed electrophysiological changes such as AF inducibility and CV decrease in our canine AF model.
Literature
1.
go back to reference Dzeshka MS, Lip GY, Snezhitskiy V, Shantsila E (2015) Cardiac fibrosis in patients with atrial fibrillation: mechanisms and clinical implications. J Am Coll Cardiol 66(8):943–959CrossRefPubMed Dzeshka MS, Lip GY, Snezhitskiy V, Shantsila E (2015) Cardiac fibrosis in patients with atrial fibrillation: mechanisms and clinical implications. J Am Coll Cardiol 66(8):943–959CrossRefPubMed
2.
go back to reference Igarashi T, Niwano S, Niwano H, Yoshizawa T, Nakamura H, Fukaya H, Fujiishi T, Ishizue N, Satoh A, Kishihara J, Murakami M, Ako J (2018) Linagliptin prevents atrial electrical and structural remodeling in a canine model of atrial fibrillation. Heart Vessels 33(10):1258–1265CrossRefPubMed Igarashi T, Niwano S, Niwano H, Yoshizawa T, Nakamura H, Fukaya H, Fujiishi T, Ishizue N, Satoh A, Kishihara J, Murakami M, Ako J (2018) Linagliptin prevents atrial electrical and structural remodeling in a canine model of atrial fibrillation. Heart Vessels 33(10):1258–1265CrossRefPubMed
3.
go back to reference Lebovitz HE, Banerji MA (2012) Non-insulin injectable treatments (glucagon-like peptide-1 and its analogs) and cardiovascular disease. Diabetes Technol Ther 14:S43–S50CrossRefPubMed Lebovitz HE, Banerji MA (2012) Non-insulin injectable treatments (glucagon-like peptide-1 and its analogs) and cardiovascular disease. Diabetes Technol Ther 14:S43–S50CrossRefPubMed
4.
go back to reference Liu Q, Anderson C, Broyde A, Polizzi C, Fernandez R, Baron A, Parkes DG (2010) Glucagon-like peptide-1 and the exenatide analogue AC3174 improve cardiac function, cardiac remodeling, and survival in rats with chronic heart failure. Cardiovasc Diabetol 9:76CrossRefPubMedPubMedCentral Liu Q, Anderson C, Broyde A, Polizzi C, Fernandez R, Baron A, Parkes DG (2010) Glucagon-like peptide-1 and the exenatide analogue AC3174 improve cardiac function, cardiac remodeling, and survival in rats with chronic heart failure. Cardiovasc Diabetol 9:76CrossRefPubMedPubMedCentral
5.
go back to reference Sonne DP, Engstrøm T, Treiman M (2008) Protective effects of GLP-1 analogues exendin-4 and GLP-1(9–36) amide against ischemia-reperfusion injury in rat heart. Regul Pept 146:243–249CrossRefPubMed Sonne DP, Engstrøm T, Treiman M (2008) Protective effects of GLP-1 analogues exendin-4 and GLP-1(9–36) amide against ischemia-reperfusion injury in rat heart. Regul Pept 146:243–249CrossRefPubMed
6.
go back to reference Satoh A, Niwano S, Niwano H, Kishihara J, Aoyama Y, Oikawa J, Fukaya H, Tamaki H, Ako J (2017) Aliskiren suppresses atrial electrical and structural remodeling in a canine model of atrial fibrillation. Heart Vessels 32(1):90–100CrossRefPubMed Satoh A, Niwano S, Niwano H, Kishihara J, Aoyama Y, Oikawa J, Fukaya H, Tamaki H, Ako J (2017) Aliskiren suppresses atrial electrical and structural remodeling in a canine model of atrial fibrillation. Heart Vessels 32(1):90–100CrossRefPubMed
7.
go back to reference Kishihara J, Niwano S, Niwano H, Aoyama Y, Satoh A, Oikawa J, Kiryu M, Fukaya H, Masaki Y, Tamaki H, Izumi T, Ako J (2014) Effect of carvedilol on atrial remodeling in canine model of atrial fibrillation. Cardiovasc Diagn Ther 4(1):28–35PubMedPubMedCentral Kishihara J, Niwano S, Niwano H, Aoyama Y, Satoh A, Oikawa J, Kiryu M, Fukaya H, Masaki Y, Tamaki H, Izumi T, Ako J (2014) Effect of carvedilol on atrial remodeling in canine model of atrial fibrillation. Cardiovasc Diagn Ther 4(1):28–35PubMedPubMedCentral
8.
go back to reference Nattel S, Maguy A, Le Bouter S, Yeh YH (2007) Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev 87(2):425–456CrossRefPubMed Nattel S, Maguy A, Le Bouter S, Yeh YH (2007) Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev 87(2):425–456CrossRefPubMed
9.
go back to reference Bosch RF, Scherer CR, Rüb N, Wöhrl S, Steinmeyer K, Haase H, Busch AE, Seipel L, Kühlkamp V (2003) Molecular mechanisms of early electrical remodeling: transcriptional downregulation of ion channel subunits reduces I(Ca, L) and I(to) in rapid atrial pacing in rabbits. J Am Coll Cardiol 41(5):858–869CrossRefPubMed Bosch RF, Scherer CR, Rüb N, Wöhrl S, Steinmeyer K, Haase H, Busch AE, Seipel L, Kühlkamp V (2003) Molecular mechanisms of early electrical remodeling: transcriptional downregulation of ion channel subunits reduces I(Ca, L) and I(to) in rapid atrial pacing in rabbits. J Am Coll Cardiol 41(5):858–869CrossRefPubMed
10.
go back to reference Gaspo R, Bosch RF, Bou-Abboud E, Nattel S (1997) Tachycardia-induced changes in Na+ current in a chronic dog model of atrial fibrillation. Circ Res 81(6):1045–1052CrossRefPubMed Gaspo R, Bosch RF, Bou-Abboud E, Nattel S (1997) Tachycardia-induced changes in Na+ current in a chronic dog model of atrial fibrillation. Circ Res 81(6):1045–1052CrossRefPubMed
11.
go back to reference Yue L, Melnyk P, Gaspo R, Wang Z, Nattel S (1999) Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation. Circ Res 84(7):776–784CrossRefPubMed Yue L, Melnyk P, Gaspo R, Wang Z, Nattel S (1999) Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation. Circ Res 84(7):776–784CrossRefPubMed
12.
go back to reference Olson TM, Michels VV, Ballew JD, Reyna SP, Karst ML, Herron KJ, Horton SC, Rodeheffer RJ, Anderson JL (2005) Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. JAMA 293(4):447–454CrossRefPubMedPubMedCentral Olson TM, Michels VV, Ballew JD, Reyna SP, Karst ML, Herron KJ, Horton SC, Rodeheffer RJ, Anderson JL (2005) Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. JAMA 293(4):447–454CrossRefPubMedPubMedCentral
13.
go back to reference Nattel S, Harada M (2014) Atrial remodeling and atrial fibrillation: recent advances and translational perspectives. J Am Coll Cardiol 63(22):2335–2345CrossRef Nattel S, Harada M (2014) Atrial remodeling and atrial fibrillation: recent advances and translational perspectives. J Am Coll Cardiol 63(22):2335–2345CrossRef
14.
go back to reference Huang JH, Chen YC, Lee TI, Kao YH, Chazo TF, Chen SA, Chen Y (2016) Glucagon-like peptide-1 regulates calcium homeostasis and electrophysiological activities of HL-1 cardiomyocytes. Peptides 78:91–98CrossRefPubMed Huang JH, Chen YC, Lee TI, Kao YH, Chazo TF, Chen SA, Chen Y (2016) Glucagon-like peptide-1 regulates calcium homeostasis and electrophysiological activities of HL-1 cardiomyocytes. Peptides 78:91–98CrossRefPubMed
15.
go back to reference Fujita H, Morii T, Fujishima H, Sato T, Shimizu T, Hosoba M, Tsukiyama K, Narita T, Takahashi T, Drucker DJ, Seino Y, Yamada Y (2014) The protective roles of GLP-1R signaling in diabetic nephropathy: possible mechanism and therapeutic potential. Kidney Int 85(3):579–589CrossRefPubMed Fujita H, Morii T, Fujishima H, Sato T, Shimizu T, Hosoba M, Tsukiyama K, Narita T, Takahashi T, Drucker DJ, Seino Y, Yamada Y (2014) The protective roles of GLP-1R signaling in diabetic nephropathy: possible mechanism and therapeutic potential. Kidney Int 85(3):579–589CrossRefPubMed
16.
go back to reference Timmers L, Henriques JP, de Kleijn DP, Devries JH, Kemperman H, Steendijk P, Verlaan CW, Kerver M, Piek JJ, Doevendans PA, Pasterkamp G, Hoefer IE (2009) Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J Am Coll Cardiol 53(6):501–510CrossRefPubMed Timmers L, Henriques JP, de Kleijn DP, Devries JH, Kemperman H, Steendijk P, Verlaan CW, Kerver M, Piek JJ, Doevendans PA, Pasterkamp G, Hoefer IE (2009) Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J Am Coll Cardiol 53(6):501–510CrossRefPubMed
17.
go back to reference Tashiro Y, Sato K, Watanabe T, Nohtomi K, Terasaki M, Nagashima M, Hirano T (2014) A glucagon-like peptide-1 analog liraglutide suppresses macrophage foam cell formation and atherosclerosis. Peptides 54:19–26CrossRefPubMed Tashiro Y, Sato K, Watanabe T, Nohtomi K, Terasaki M, Nagashima M, Hirano T (2014) A glucagon-like peptide-1 analog liraglutide suppresses macrophage foam cell formation and atherosclerosis. Peptides 54:19–26CrossRefPubMed
Metadata
Title
Liraglutide suppresses atrial electrophysiological changes
Authors
Hironori Nakamura
Shinichi Niwano
Hiroe Niwano
Hidehira Fukaya
Masami Murakami
Jun Kishihara
Akira Satoh
Tomoharu Yoshizawa
Naruya Ishizue
Tazuru Igarashi
Tamami Fujiishi
Junya Ako
Publication date
01-08-2019
Publisher
Springer Japan
Published in
Heart and Vessels / Issue 8/2019
Print ISSN: 0910-8327
Electronic ISSN: 1615-2573
DOI
https://doi.org/10.1007/s00380-018-01327-4

Other articles of this Issue 8/2019

Heart and Vessels 8/2019 Go to the issue