Skip to main content
Top
Published in: Heart and Vessels 1/2016

01-01-2016 | Original Article

Exogenous midkine administration prevents cardiac remodeling in pacing-induced congestive heart failure of rabbits

Authors: Masahide Harada, Mayumi Hojo, Kaichiro Kamiya, Kenji Kadomatsu, Toyoaki Murohara, Itsuo Kodama, Mitsuru Horiba

Published in: Heart and Vessels | Issue 1/2016

Login to get access

Abstract

Midkine (MK), a heparin-binding growth factor, has been shown to prevent cardiac remodeling after ischemic injury through its anti-apoptotic effect. Cell apoptosis is central to the pathophysiology of cardiac remodeling in congestive heart failure (CHF) of ischemic as well as non-ischemic origin. We hypothesized that MK exerts the anti-apoptotic cardioprotective effect in CHF of non-ischemic etiology. MK protein or vehicle (normal saline) was subcutaneously administered in tachycardia-induced CHF rabbits (right ventricular pacing, 350 beats/min, 4 weeks). The vehicle-treated rabbits (n = 19, control) demonstrated severe CHF and high mortality rate, whereas MK (n = 16) demonstrated a well-compensated state and a lower mortality rate. In echocardiography, left ventricular (LV) end-diastolic dimension decreased in MK versus control, whereas LV systolic function increased. In histological analysis (picrosirius red staining), MK decreased collagen deposition area compared with control. TUNEL staining showed that MK prevented cell apoptosis and minimized myocyte loss in the CHF rabbit ventricle, associated with activation of PI3-K/Akt signaling, producing a parallel decrease of Bax/Bcl-2 ratio. MK prevented progression of cardiac remodeling in the CHF rabbit, likely by activation of anti-apoptotic signaling. Exogenous MK application might be a novel therapeutic strategy for CHF due to non-ischemic origin.
Literature
1.
go back to reference Muramatsu T (2002) Midkine and pleiotrophin: two related proteins involved in development, survival, inflammation and tumorigenesis. J Biochem 132(3):359–371PubMedCrossRef Muramatsu T (2002) Midkine and pleiotrophin: two related proteins involved in development, survival, inflammation and tumorigenesis. J Biochem 132(3):359–371PubMedCrossRef
2.
3.
go back to reference Horiba M, Kadomatsu K, Yasui K, Lee JK, Takenaka H, Sumida A, Kamiya K, Chen S, Sakuma S, Muramatsu T, Kodama I (2006) Midkine plays a protective role against cardiac ischemia/reperfusion injury through a reduction of apoptotic reaction. Circulation 114(16):1713–1720PubMedCrossRef Horiba M, Kadomatsu K, Yasui K, Lee JK, Takenaka H, Sumida A, Kamiya K, Chen S, Sakuma S, Muramatsu T, Kodama I (2006) Midkine plays a protective role against cardiac ischemia/reperfusion injury through a reduction of apoptotic reaction. Circulation 114(16):1713–1720PubMedCrossRef
4.
go back to reference Takenaka H, Horiba M, Ishiguro H, Sumida A, Hojo M, Usui A, Akita T, Sakuma S, Ueda Y, Kodama I, Kadomatsu K (2009) Midkine prevents ventricular remodeling and improves long-term survival after myocardial infarction. Am J Physiol Heart Circ Physiol 296(2):H462–H469PubMedCrossRef Takenaka H, Horiba M, Ishiguro H, Sumida A, Hojo M, Usui A, Akita T, Sakuma S, Ueda Y, Kodama I, Kadomatsu K (2009) Midkine prevents ventricular remodeling and improves long-term survival after myocardial infarction. Am J Physiol Heart Circ Physiol 296(2):H462–H469PubMedCrossRef
5.
go back to reference Sumida A, Horiba M, Ishiguro H, Takenaka H, Ueda N, Ooboshi H, Opthof T, Kadomatsu K, Kodama I (2010) Midkine gene transfer after myocardial infarction in rats prevents remodelling and ameliorates cardiac dysfunction. Cardiovasc Res 86(1):113–121PubMedCrossRef Sumida A, Horiba M, Ishiguro H, Takenaka H, Ueda N, Ooboshi H, Opthof T, Kadomatsu K, Kodama I (2010) Midkine gene transfer after myocardial infarction in rats prevents remodelling and ameliorates cardiac dysfunction. Cardiovasc Res 86(1):113–121PubMedCrossRef
6.
go back to reference Ishiguro H, Horiba M, Takenaka H, Sumida A, Opthof T, Ishiguro YS, Kadomatsu K, Murohara T, Kodama I (2011) A single intracoronary injection of midkine reduces ischemia/reperfusion injury in swine hearts: a novel therapeutic approach for acute coronary syndrome. Front Physiol 2:27PubMedPubMedCentralCrossRef Ishiguro H, Horiba M, Takenaka H, Sumida A, Opthof T, Ishiguro YS, Kadomatsu K, Murohara T, Kodama I (2011) A single intracoronary injection of midkine reduces ischemia/reperfusion injury in swine hearts: a novel therapeutic approach for acute coronary syndrome. Front Physiol 2:27PubMedPubMedCentralCrossRef
7.
go back to reference Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, Schmidt U, Semigran MJ, Dec GW, Khaw BA (1996) Apoptosis in myocytes in end-stage heart failure. N Engl J Med 335(16):1182–1189PubMedCrossRef Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, Schmidt U, Semigran MJ, Dec GW, Khaw BA (1996) Apoptosis in myocytes in end-stage heart failure. N Engl J Med 335(16):1182–1189PubMedCrossRef
8.
go back to reference Saraste A, Pulkki K, Kallajoki M, Heikkila P, Laine P, Mattila S, Nieminen MS, Parvinen M, Voipio-Pulkki LM (1999) Cardiomyocyte apoptosis and progression of heart failure to transplantation. Eur J Clin Invest 29(5):380–386PubMedCrossRef Saraste A, Pulkki K, Kallajoki M, Heikkila P, Laine P, Mattila S, Nieminen MS, Parvinen M, Voipio-Pulkki LM (1999) Cardiomyocyte apoptosis and progression of heart failure to transplantation. Eur J Clin Invest 29(5):380–386PubMedCrossRef
9.
go back to reference Wencker D, Chandra M, Nguyen K, Miao W, Garantziotis S, Factor SM, Shirani J, Armstrong RC, Kitsis RN (2003) A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest 111(10):1497–1504PubMedPubMedCentralCrossRef Wencker D, Chandra M, Nguyen K, Miao W, Garantziotis S, Factor SM, Shirani J, Armstrong RC, Kitsis RN (2003) A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest 111(10):1497–1504PubMedPubMedCentralCrossRef
10.
go back to reference Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di Loreto C, Beltrami CA, Krajewski S, Reed JC, Anversa P (1997) Apoptosis in the failing human heart. N Engl J Med 336(16):1131–1141PubMedCrossRef Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di Loreto C, Beltrami CA, Krajewski S, Reed JC, Anversa P (1997) Apoptosis in the failing human heart. N Engl J Med 336(16):1131–1141PubMedCrossRef
11.
go back to reference Harada M, Tsuji Y, Ishiguro YS, Takanari H, Okuno Y, Inden Y, Honjo H, Lee JK, Murohara T, Sakuma I, Kamiya K, Kodama I (2011) Rate-dependent shortening of action potential duration increases ventricular vulnerability in failing rabbit heart. Am J Physiol Heart Circ Physiol 300(2):H565–H573PubMedCrossRef Harada M, Tsuji Y, Ishiguro YS, Takanari H, Okuno Y, Inden Y, Honjo H, Lee JK, Murohara T, Sakuma I, Kamiya K, Kodama I (2011) Rate-dependent shortening of action potential duration increases ventricular vulnerability in failing rabbit heart. Am J Physiol Heart Circ Physiol 300(2):H565–H573PubMedCrossRef
12.
go back to reference Narita H, Chen S, Komori K, Kadomatsu K (2008) Midkine is expressed by infiltrating macrophages in in-stent restenosis in hypercholesterolemic rabbits. J Vasc Surg 47(6):1322–1329PubMedCrossRef Narita H, Chen S, Komori K, Kadomatsu K (2008) Midkine is expressed by infiltrating macrophages in in-stent restenosis in hypercholesterolemic rabbits. J Vasc Surg 47(6):1322–1329PubMedCrossRef
13.
go back to reference Horiba M, Kadomatsu K, Nakamura E, Muramatsu H, Ikematsu S, Sakuma S, Hayashi K, Yuzawa Y, Matsuo S, Kuzuya M, Kaname T, Hirai M, Saito H, Muramatsu T (2000) Neointima formation in a restenosis model is suppressed in Midkine-deficient mice. J Clin Invest 105(4):489–495PubMedPubMedCentralCrossRef Horiba M, Kadomatsu K, Nakamura E, Muramatsu H, Ikematsu S, Sakuma S, Hayashi K, Yuzawa Y, Matsuo S, Kuzuya M, Kaname T, Hirai M, Saito H, Muramatsu T (2000) Neointima formation in a restenosis model is suppressed in Midkine-deficient mice. J Clin Invest 105(4):489–495PubMedPubMedCentralCrossRef
14.
go back to reference Banno H, Takei Y, Muramatsu T, Komori K, Kadomatsu K (2006) Controlled release of small interfering RNA targeting midkine attenuates intimal hyperplasia in vein grafts. J Vasc Surg 44(3):633–641PubMedCrossRef Banno H, Takei Y, Muramatsu T, Komori K, Kadomatsu K (2006) Controlled release of small interfering RNA targeting midkine attenuates intimal hyperplasia in vein grafts. J Vasc Surg 44(3):633–641PubMedCrossRef
15.
go back to reference Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL (1994) Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94(4):1621–1628PubMedPubMedCentralCrossRef Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL (1994) Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94(4):1621–1628PubMedPubMedCentralCrossRef
16.
go back to reference Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Krajewski S, Reed JC, Olivetti G, Anversa P (1996) Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 74(1):86–107PubMed Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Krajewski S, Reed JC, Olivetti G, Anversa P (1996) Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 74(1):86–107PubMed
17.
go back to reference Kajstura J, Cheng W, Sarangarajan R, Li P, Li B, Nitahara JA, Chapnick S, Reiss K, Olivetti G, Anversa P (1996) Necrotic and apoptotic myocyte cell death in the aging heart of Fischer 344 rats. Am J Physiol 271(3 Pt 2):H1215–H1228PubMed Kajstura J, Cheng W, Sarangarajan R, Li P, Li B, Nitahara JA, Chapnick S, Reiss K, Olivetti G, Anversa P (1996) Necrotic and apoptotic myocyte cell death in the aging heart of Fischer 344 rats. Am J Physiol 271(3 Pt 2):H1215–H1228PubMed
18.
go back to reference Liu Y, Cigola E, Cheng W, Kajstura J, Olivetti G, Hintze TH, Anversa P (1995) Myocyte nuclear mitotic division and programmed myocyte cell death characterize the cardiac myopathy induced by rapid ventricular pacing in dogs. Lab Invest 73(6):771–787PubMed Liu Y, Cigola E, Cheng W, Kajstura J, Olivetti G, Hintze TH, Anversa P (1995) Myocyte nuclear mitotic division and programmed myocyte cell death characterize the cardiac myopathy induced by rapid ventricular pacing in dogs. Lab Invest 73(6):771–787PubMed
19.
go back to reference Sharov VG, Sabbah HN, Shimoyama H, Goussev AV, Lesch M, Goldstein S (1996) Evidence of cardiocyte apoptosis in myocardium of dogs with chronic heart failure. Am J Pathol 148(1):141–149PubMedPubMedCentral Sharov VG, Sabbah HN, Shimoyama H, Goussev AV, Lesch M, Goldstein S (1996) Evidence of cardiocyte apoptosis in myocardium of dogs with chronic heart failure. Am J Pathol 148(1):141–149PubMedPubMedCentral
20.
go back to reference Weckbach LT, Muramatsu T, Walzog B (2011) Midkine in inflammation. Scientific World J 11:2491–2505CrossRef Weckbach LT, Muramatsu T, Walzog B (2011) Midkine in inflammation. Scientific World J 11:2491–2505CrossRef
21.
go back to reference Hobo A, Yuzawa Y, Kosugi T, Kato N, Asai N, Sato W, Maruyama S, Ito Y, Konori H, Ikematsu S, Nishiyama A, Matsuo S, Kadomatsu K (2009) The growth factor midkine regulates the renin-angiotensin system in mice. J Clin Invest 119(6):1616–1625PubMedPubMedCentralCrossRef Hobo A, Yuzawa Y, Kosugi T, Kato N, Asai N, Sato W, Maruyama S, Ito Y, Konori H, Ikematsu S, Nishiyama A, Matsuo S, Kadomatsu K (2009) The growth factor midkine regulates the renin-angiotensin system in mice. J Clin Invest 119(6):1616–1625PubMedPubMedCentralCrossRef
22.
go back to reference Fujita S, Shimojo N, Terasaki F, Otsuka K, Hosotani N, Kohda Y, Tanaka T, Nishioka T, Yoshida T, Hiroe M, Kitaura Y, Ishizaka N, Imanaka-Yoshida K (2013) Atrial natriuretic peptide exerts protective action against angiotensin II-induced cardiac remodeling by attenuating inflammation via endothelin-1/endothelin receptor A cascade. Heart Vessels 28(5):646–657PubMedCrossRef Fujita S, Shimojo N, Terasaki F, Otsuka K, Hosotani N, Kohda Y, Tanaka T, Nishioka T, Yoshida T, Hiroe M, Kitaura Y, Ishizaka N, Imanaka-Yoshida K (2013) Atrial natriuretic peptide exerts protective action against angiotensin II-induced cardiac remodeling by attenuating inflammation via endothelin-1/endothelin receptor A cascade. Heart Vessels 28(5):646–657PubMedCrossRef
23.
go back to reference Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase Akt pathway in human cancer. Nat Rev Cancer 2(7):489–501PubMedCrossRef Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase Akt pathway in human cancer. Nat Rev Cancer 2(7):489–501PubMedCrossRef
24.
go back to reference Sebolt-Leopold JS, Herrera R (2004) Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 4(12):937–947PubMedCrossRef Sebolt-Leopold JS, Herrera R (2004) Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 4(12):937–947PubMedCrossRef
25.
go back to reference Merighi S, Benini A, Mirandola P, Gessi S, Varani K, Leung E, Maclennan S, Baraldi PG, Borea PA (2006) Modulation of the Akt/Ras/Raf/Mek/Erk pathway by A3 adenosine receptor. Purinergic Signal 2(4):627–632PubMedPubMedCentralCrossRef Merighi S, Benini A, Mirandola P, Gessi S, Varani K, Leung E, Maclennan S, Baraldi PG, Borea PA (2006) Modulation of the Akt/Ras/Raf/Mek/Erk pathway by A3 adenosine receptor. Purinergic Signal 2(4):627–632PubMedPubMedCentralCrossRef
26.
go back to reference Moelling K, Schad K, Bosse M, Zimmermann S, Schweneker M (2002) Regulation of Raf-Akt cross-talk. J Biol Chem 277(34):31099–31106PubMedCrossRef Moelling K, Schad K, Bosse M, Zimmermann S, Schweneker M (2002) Regulation of Raf-Akt cross-talk. J Biol Chem 277(34):31099–31106PubMedCrossRef
27.
go back to reference Harada M, Luo X, Qi XY, Tadevosyan A, Maguy A, Ordog B, Ledoux J, Kato T, Naud P, Voigt N, Shi Y, Kamiya K, Murohara T, Kodama I, Tardif JC, Shotten U, Van Wagoner DR, Dobrev D, Nattel S (2012) Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation. Circulation 126(17):2051–2064PubMedPubMedCentralCrossRef Harada M, Luo X, Qi XY, Tadevosyan A, Maguy A, Ordog B, Ledoux J, Kato T, Naud P, Voigt N, Shi Y, Kamiya K, Murohara T, Kodama I, Tardif JC, Shotten U, Van Wagoner DR, Dobrev D, Nattel S (2012) Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation. Circulation 126(17):2051–2064PubMedPubMedCentralCrossRef
28.
go back to reference Olson ER, Shamhart PE, Naugle JE, Meszaros JG (2008) Angiotensin II-induced extracellular signal-regulated kinase 1/2 activation is mediated by protein kinase C-delta and intracellular calcium in adult rat cardiac fibroblasts. Hypertension 51(3):704–711PubMedCrossRef Olson ER, Shamhart PE, Naugle JE, Meszaros JG (2008) Angiotensin II-induced extracellular signal-regulated kinase 1/2 activation is mediated by protein kinase C-delta and intracellular calcium in adult rat cardiac fibroblasts. Hypertension 51(3):704–711PubMedCrossRef
29.
go back to reference Yamamoto Y, Osanai T, Nishizaki F, Sukekawa T, Izumiyama K, Sagara S, Okumura K (2012) Matrix metalloprotein-9 actiavtion under cell-to-cell interaction between endothelial cells and monocytes: possible role of hypoxia and tumor necrosis factor-α. Heart Vessel 27(6):539–546CrossRef Yamamoto Y, Osanai T, Nishizaki F, Sukekawa T, Izumiyama K, Sagara S, Okumura K (2012) Matrix metalloprotein-9 actiavtion under cell-to-cell interaction between endothelial cells and monocytes: possible role of hypoxia and tumor necrosis factor-α. Heart Vessel 27(6):539–546CrossRef
30.
go back to reference Wang W, Peng Y, Wang Y, Zhao X, Yuan Z (2009) Anti-apoptotic effect of heat shock protein 90 on hypoxia-mediated cardiomyocyte damage is mediated via the phospahtidylinositol 3-kinase/AKT pathway. Clin Exp Pharmacol Physiol 36(9):899–903PubMedCrossRef Wang W, Peng Y, Wang Y, Zhao X, Yuan Z (2009) Anti-apoptotic effect of heat shock protein 90 on hypoxia-mediated cardiomyocyte damage is mediated via the phospahtidylinositol 3-kinase/AKT pathway. Clin Exp Pharmacol Physiol 36(9):899–903PubMedCrossRef
31.
go back to reference Kapustian LL, Vigontina OA, Rozhko OT, Ryabenko DV, Michowski W, Lesniak W, Filipek A, Kroupskaya IV, Sidorik LL (2013) Hsp90 and its co-chaperone, Sgt1, as autoantigens in dilated cardiomyopathy. Heart Vessel 28(1):114–119CrossRef Kapustian LL, Vigontina OA, Rozhko OT, Ryabenko DV, Michowski W, Lesniak W, Filipek A, Kroupskaya IV, Sidorik LL (2013) Hsp90 and its co-chaperone, Sgt1, as autoantigens in dilated cardiomyopathy. Heart Vessel 28(1):114–119CrossRef
32.
go back to reference Kitahara T, Shishido T, Suzuki S, Katoh S, Sasaki T, Ishino M, Nitobe J, Miyamoto T, Miyashita T, Watanabe T, Takeishi Y, Kubota I (2010) Serum midkine as a predictor of cardiac events in patients with chronic heart failure. J Cardiac Fail 16(4):308–313CrossRef Kitahara T, Shishido T, Suzuki S, Katoh S, Sasaki T, Ishino M, Nitobe J, Miyamoto T, Miyashita T, Watanabe T, Takeishi Y, Kubota I (2010) Serum midkine as a predictor of cardiac events in patients with chronic heart failure. J Cardiac Fail 16(4):308–313CrossRef
33.
go back to reference Netsu S, Shishido T, Kitahara T, Honda Y, Funayama A, Narui T, Kadowaki S, Takahashi H, Miyamoto T, Arimoto T, Nishiyama S, Watanabe T, Woo CH, Takeishi Y, Kubota I (2013) Midkine exacerbates pressure overload-induced cardiac remodeling. Biochem Biophys Res Commun 443(1):205–210PubMedCrossRef Netsu S, Shishido T, Kitahara T, Honda Y, Funayama A, Narui T, Kadowaki S, Takahashi H, Miyamoto T, Arimoto T, Nishiyama S, Watanabe T, Woo CH, Takeishi Y, Kubota I (2013) Midkine exacerbates pressure overload-induced cardiac remodeling. Biochem Biophys Res Commun 443(1):205–210PubMedCrossRef
Metadata
Title
Exogenous midkine administration prevents cardiac remodeling in pacing-induced congestive heart failure of rabbits
Authors
Masahide Harada
Mayumi Hojo
Kaichiro Kamiya
Kenji Kadomatsu
Toyoaki Murohara
Itsuo Kodama
Mitsuru Horiba
Publication date
01-01-2016
Publisher
Springer Japan
Published in
Heart and Vessels / Issue 1/2016
Print ISSN: 0910-8327
Electronic ISSN: 1615-2573
DOI
https://doi.org/10.1007/s00380-014-0569-5

Other articles of this Issue 1/2016

Heart and Vessels 1/2016 Go to the issue