Skip to main content
Top
Published in: Heart and Vessels 4/2013

01-07-2013 | Original Article

Heart rate reduction with ivabradine prevents thyroid hormone-induced cardiac remodeling in rat

Authors: Bo Hyun Kim, Kyoung Im Cho, Seong Man Kim, Nari Kim, Jin Han, Jee Yeon Kim, In Ju Kim

Published in: Heart and Vessels | Issue 4/2013

Login to get access

Abstract

Ivabradine slows the heart rate (HR) by selectively inhibiting the I(f) current in the sinus node without a negative inotropic effect. We aimed to investigate the effects of ivabradine on thyroid hormone-induced left ventricular (LV) remodeling and ion channel activity in rats. Thirty Sprague–Dawley rats were randomly selected into the groups of control, injection of l-thyroxine (T4, 100 μg/kg/day), and injection of l-thyroxine with ivabradine (T4-Iva, T4 + 10 mg/kg/day). Circumferential (S circ), radial (S rad), and longitudinal (S long) strains were assessed by speckle tracking echocardiography (STE). Myocardial width and fibrosis were assessed from histological LV cross sections, and electrophysiological analysis was done by patch clamp method. In comparison with the control group, the T4 group showed significantly increased HR and LV end-systolic diameter (LVESD), reduced S circ (−16.04 ± 3.95 vs. −7.84 ± 2.98 %, p < 0.001), S rad (20.94 ± 3.81 vs. 40.57 ± 6.70 %, p < 0.001), and S long (−15.26 ± 5.15 vs. −23.83 ± 5.19 %, p < 0.001), despite the 59.5 % increase of average I Ca,L density at 0 mV (13.4 ± 1.2 pA/pF) compared to control group (8.4 ± 0.8 pA/pF). Treatment with ivabradine significantly reduced HR and LVESD, improved SRcirc, S long and SRlong in the T4 group, and the average I Ca,L density at 0 mV in T4-Iva groups (9.9 ± 1.6 pA/pF) was restored to the control level. Morphologically, the T4 group showed significantly increased cardiomyocyte width (25.3 ± 1.89 vs. 18.90 ± 1.14 μm in control, p < 0.001) and fibrosis, which were not significantly changed by ivabradine. In conclusion, selective HR reduction by ivabradine attenuates thyroid hormone-induced reduction of myocardial deformation and altered intracellular Ca2+ handling without modification of the myocyte hypertrophy with fibrosis in rats.
Literature
1.
go back to reference Biondi B, Palmieri EA, Lombardi G, Fazio S (2002) Effects of thyroid hormone on cardiac function: the relative importance of heart rate, loading conditions, and myocardial contractility in the regulation of cardiac performance in human hyperthyroidism. J Clin Endocrinol Metab 87:968–974PubMedCrossRef Biondi B, Palmieri EA, Lombardi G, Fazio S (2002) Effects of thyroid hormone on cardiac function: the relative importance of heart rate, loading conditions, and myocardial contractility in the regulation of cardiac performance in human hyperthyroidism. J Clin Endocrinol Metab 87:968–974PubMedCrossRef
2.
3.
go back to reference Khandwala HM (2004) A case of congestive heart failure due to reversible dilated cardiomyopathy caused by hyperthyroidism. South Med J 97:1001–1003PubMedCrossRef Khandwala HM (2004) A case of congestive heart failure due to reversible dilated cardiomyopathy caused by hyperthyroidism. South Med J 97:1001–1003PubMedCrossRef
4.
go back to reference Kim JY, Kim BS, Kang JH (2001) Dilated cardiomyopathy in thyrotoxicosis and Moyamoya disease. Int J Cardiol 80:101–103PubMedCrossRef Kim JY, Kim BS, Kang JH (2001) Dilated cardiomyopathy in thyrotoxicosis and Moyamoya disease. Int J Cardiol 80:101–103PubMedCrossRef
5.
go back to reference Riaz K, Forker AD, Isley WL, Hamburg MS, McCullough PA (2003) Hyperthyroidism: a “curable” cause of congestive heart failure–three case reports and a review of the literature. Congest Heart Fail 9:40–46PubMedCrossRef Riaz K, Forker AD, Isley WL, Hamburg MS, McCullough PA (2003) Hyperthyroidism: a “curable” cause of congestive heart failure–three case reports and a review of the literature. Congest Heart Fail 9:40–46PubMedCrossRef
6.
go back to reference Watanabe E, Ohsawa H, Noike H, Okamoto K, Tokuyama A, Kanai M, Mineoka K, Miyashita Y, Kantoh S, Hiruta N (1995) Dilated cardiomyopathy associated with hyperthyroidism. Intern Med 34:762–767PubMedCrossRef Watanabe E, Ohsawa H, Noike H, Okamoto K, Tokuyama A, Kanai M, Mineoka K, Miyashita Y, Kantoh S, Hiruta N (1995) Dilated cardiomyopathy associated with hyperthyroidism. Intern Med 34:762–767PubMedCrossRef
7.
go back to reference Yu YH, Bilezikian JP (2000) Tachycardia-induced cardiomyopathy secondary to thyrotoxicosis: a young man with previously unrecognized Graves’ disease. Thyroid 10:923–927PubMedCrossRef Yu YH, Bilezikian JP (2000) Tachycardia-induced cardiomyopathy secondary to thyrotoxicosis: a young man with previously unrecognized Graves’ disease. Thyroid 10:923–927PubMedCrossRef
8.
go back to reference Degens H, Gilde AJ, Lindhout M, Willemsen PH, Van Der Vusse GJ, Van Bilsen M (2003) Functional and metabolic adaptation of the heart to prolonged thyroid hormone treatment. Am J Physiol Heart Circ Physiol 284:H108–H115PubMed Degens H, Gilde AJ, Lindhout M, Willemsen PH, Van Der Vusse GJ, Van Bilsen M (2003) Functional and metabolic adaptation of the heart to prolonged thyroid hormone treatment. Am J Physiol Heart Circ Physiol 284:H108–H115PubMed
9.
go back to reference Cacciatori V, Bellavere F, Pezzarossa A, Dellera A, Gemma ML, Thomaseth K, Castello R, Moghetti P, Muggeo M (1996) Power spectral analysis of heart rate in hyperthyroidism. J Clin Endocrinol Metab 81:2828–2835PubMedCrossRef Cacciatori V, Bellavere F, Pezzarossa A, Dellera A, Gemma ML, Thomaseth K, Castello R, Moghetti P, Muggeo M (1996) Power spectral analysis of heart rate in hyperthyroidism. J Clin Endocrinol Metab 81:2828–2835PubMedCrossRef
10.
go back to reference von Olshausen K, Bischoff S, Kahaly G, Mohr-Kahaly S, Erbel R, Beyer J, Meyer J (1989) Cardiac arrhythmias and heart rate in hyperthyroidism. Am J Cardiol 63:930–933CrossRef von Olshausen K, Bischoff S, Kahaly G, Mohr-Kahaly S, Erbel R, Beyer J, Meyer J (1989) Cardiac arrhythmias and heart rate in hyperthyroidism. Am J Cardiol 63:930–933CrossRef
11.
go back to reference Sun ZQ, Ojamaa K, Nakamura TY, Artman M, Klein I, Coetzee WA (2001) Thyroid hormone increases pacemaker activity in rat neonatal atrial myocytes. J Mol Cell Cardiol 33:811–824PubMedCrossRef Sun ZQ, Ojamaa K, Nakamura TY, Artman M, Klein I, Coetzee WA (2001) Thyroid hormone increases pacemaker activity in rat neonatal atrial myocytes. J Mol Cell Cardiol 33:811–824PubMedCrossRef
12.
go back to reference Yanagihara K, Irisawa H (1980) Inward current activated during hyperpolarization in the rabbit sinoatrial node cell. Pflugers Arch 385:11–19PubMedCrossRef Yanagihara K, Irisawa H (1980) Inward current activated during hyperpolarization in the rabbit sinoatrial node cell. Pflugers Arch 385:11–19PubMedCrossRef
13.
go back to reference Brown HF, DiFrancesco D, Noble SJ (1979) How does adrenaline accelerate the heart? Nature 280:235–236PubMedCrossRef Brown HF, DiFrancesco D, Noble SJ (1979) How does adrenaline accelerate the heart? Nature 280:235–236PubMedCrossRef
14.
go back to reference Thollon C, Cambarrat C, Vian J, Prost JF, Peglion JL, Vilaine JP (1994) Electrophysiological effects of S 16257, a novel sino-atrial node modulator, on rabbit and guinea-pig cardiac preparations: comparison with UL-FS 49. Br J Pharmacol 112:37–42PubMedCrossRef Thollon C, Cambarrat C, Vian J, Prost JF, Peglion JL, Vilaine JP (1994) Electrophysiological effects of S 16257, a novel sino-atrial node modulator, on rabbit and guinea-pig cardiac preparations: comparison with UL-FS 49. Br J Pharmacol 112:37–42PubMedCrossRef
15.
go back to reference Savelieva I, Camm AJ (2006) I f inhibition with ivabradine: electrophysiological effects and safety. Drug Saf 31:95–107CrossRef Savelieva I, Camm AJ (2006) I f inhibition with ivabradine: electrophysiological effects and safety. Drug Saf 31:95–107CrossRef
16.
go back to reference Becker M, Bilke E, Kuhl H, Katoh M, Kramann R, Franke A, Bucker A, Hanrath P, Hoffmann R (2006) Analysis of myocardial deformation based on pixel tracking in two-dimensional echocardiographic images enables quantitative assessment of regional left ventricular function. Heart 92:1102–1108PubMedCrossRef Becker M, Bilke E, Kuhl H, Katoh M, Kramann R, Franke A, Bucker A, Hanrath P, Hoffmann R (2006) Analysis of myocardial deformation based on pixel tracking in two-dimensional echocardiographic images enables quantitative assessment of regional left ventricular function. Heart 92:1102–1108PubMedCrossRef
17.
go back to reference Thomas JD, Popovic ZB (2006) Assessment of left ventricular function by cardiac ultrasound. J Am Coll Cardiol 48:2012–2025PubMedCrossRef Thomas JD, Popovic ZB (2006) Assessment of left ventricular function by cardiac ultrasound. J Am Coll Cardiol 48:2012–2025PubMedCrossRef
18.
go back to reference Cohen MV, Schulman IC, Spenillo A, Surks MI (1981) Effects of thyroid hormone on left ventricular function in patients treated for thyrotoxicosis. Am J Cardiol 48:33–38PubMedCrossRef Cohen MV, Schulman IC, Spenillo A, Surks MI (1981) Effects of thyroid hormone on left ventricular function in patients treated for thyrotoxicosis. Am J Cardiol 48:33–38PubMedCrossRef
19.
go back to reference Friedman MJ, Okada RD, Ewy GA, Hellman DJ (1982) Left ventricular systolic and diastolic function in hyperthyroidism. Am Heart J 104:1303–1308PubMedCrossRef Friedman MJ, Okada RD, Ewy GA, Hellman DJ (1982) Left ventricular systolic and diastolic function in hyperthyroidism. Am Heart J 104:1303–1308PubMedCrossRef
20.
go back to reference Forfar JC, Matthews DM, Toft AD (1984) Delayed recovery of left ventricular function after antithyroid treatment. Further evidence for reversible abnormalities of contractility in hyperthyroidism. Br Heart J 52:215–222PubMedCrossRef Forfar JC, Matthews DM, Toft AD (1984) Delayed recovery of left ventricular function after antithyroid treatment. Further evidence for reversible abnormalities of contractility in hyperthyroidism. Br Heart J 52:215–222PubMedCrossRef
21.
go back to reference Feldman T, Borow KM, Sarne DH, Neumann A, Lang RM (1986) Myocardial mechanics in hyperthyroidism: importance of left ventricular loading conditions, heart rate and contractile state. J Am Coll Cardiol 7:967–974PubMedCrossRef Feldman T, Borow KM, Sarne DH, Neumann A, Lang RM (1986) Myocardial mechanics in hyperthyroidism: importance of left ventricular loading conditions, heart rate and contractile state. J Am Coll Cardiol 7:967–974PubMedCrossRef
22.
go back to reference McKinsey TA, Olson EN (2005) Toward transcriptional therapies for the failing heart: chemical screens to modulate genes. J Clin Invest 115:538–546PubMed McKinsey TA, Olson EN (2005) Toward transcriptional therapies for the failing heart: chemical screens to modulate genes. J Clin Invest 115:538–546PubMed
23.
24.
go back to reference Sernia C, Marchant C, Brown L, Hoey A (1993) Cardiac angiotensin receptors in experimental hyperthyroidism in dogs. Cardiovasc Res 27:423–428PubMedCrossRef Sernia C, Marchant C, Brown L, Hoey A (1993) Cardiac angiotensin receptors in experimental hyperthyroidism in dogs. Cardiovasc Res 27:423–428PubMedCrossRef
25.
go back to reference Kobori H, Ichihara A, Suzuki H, Miyashita Y, Hayashi M, Saruta T (1997) Thyroid hormone stimulates renin synthesis in rats without involving the sympathetic nervous system. Am J Physiol 272:E227–E232PubMed Kobori H, Ichihara A, Suzuki H, Miyashita Y, Hayashi M, Saruta T (1997) Thyroid hormone stimulates renin synthesis in rats without involving the sympathetic nervous system. Am J Physiol 272:E227–E232PubMed
26.
go back to reference Sandow A (1952) Excitation-contraction coupling in muscular response. Yale J Biol Med 25:176–201PubMed Sandow A (1952) Excitation-contraction coupling in muscular response. Yale J Biol Med 25:176–201PubMed
27.
go back to reference Uehara Y, Azuma Y, Minai K, Yoshida H, Yoshimura M, Shimizu M (2012) Endothelin-1 prolongs intracellular calcium transient decay in neonatal rat cardiac myocytes. Heart Vessels 27:98–105PubMedCrossRef Uehara Y, Azuma Y, Minai K, Yoshida H, Yoshimura M, Shimizu M (2012) Endothelin-1 prolongs intracellular calcium transient decay in neonatal rat cardiac myocytes. Heart Vessels 27:98–105PubMedCrossRef
28.
go back to reference Brooksby P, Levi AJ, Jones JV (1993) The electrophysiological characteristics of hypertrophied ventricular myocytes from the spontaneously hypertensive rat. J Hypertens 11:611–622PubMedCrossRef Brooksby P, Levi AJ, Jones JV (1993) The electrophysiological characteristics of hypertrophied ventricular myocytes from the spontaneously hypertensive rat. J Hypertens 11:611–622PubMedCrossRef
29.
go back to reference Keung EC (1989) Calcium current is increased in isolated adult myocytes from hypertrophied rat myocardium. Circ Res 64:753–763PubMedCrossRef Keung EC (1989) Calcium current is increased in isolated adult myocytes from hypertrophied rat myocardium. Circ Res 64:753–763PubMedCrossRef
30.
go back to reference Scamps F, Mayoux E, Charlemagne D, Vassort G (1990) Calcium current in single cells isolated from normal and hypertrophied rat heart. Effects of beta-adrenergic stimulation. Circ Res 67:199–208PubMedCrossRef Scamps F, Mayoux E, Charlemagne D, Vassort G (1990) Calcium current in single cells isolated from normal and hypertrophied rat heart. Effects of beta-adrenergic stimulation. Circ Res 67:199–208PubMedCrossRef
31.
go back to reference Gomez AM, Benitah JP, Henzel D, Vinet A, Lorente P, Delgado C (1997) Modulation of electrical heterogeneity by compensated hypertrophy in rat left ventricle. Am J Physiol 272:H1078–H1086PubMed Gomez AM, Benitah JP, Henzel D, Vinet A, Lorente P, Delgado C (1997) Modulation of electrical heterogeneity by compensated hypertrophy in rat left ventricle. Am J Physiol 272:H1078–H1086PubMed
32.
go back to reference Xiao YF, McArdle JJ (1994) Elevated density and altered pharmacologic properties of myocardial calcium current of the spontaneously hypertensive rat. J Hypertens 12:783–790PubMedCrossRef Xiao YF, McArdle JJ (1994) Elevated density and altered pharmacologic properties of myocardial calcium current of the spontaneously hypertensive rat. J Hypertens 12:783–790PubMedCrossRef
33.
go back to reference Kreuzberg, Theissen P, Schicha H, Schroder F, Mehlhorn U, de Vivie ER, Boknik P, Neumann J, Grohe C, Herzig S (2000) Single-channel activity and expression of atrial L-type Ca channels in patients with latent hyperthyroidism. Am J Physiol 278:H723–H730 Kreuzberg, Theissen P, Schicha H, Schroder F, Mehlhorn U, de Vivie ER, Boknik P, Neumann J, Grohe C, Herzig S (2000) Single-channel activity and expression of atrial L-type Ca channels in patients with latent hyperthyroidism. Am J Physiol 278:H723–H730
34.
go back to reference Mager S, Palti Y, Binah O (1992) Mechanism of hyperthyroidism-induced modulation of the L-type Ca2+ current in guinea pig ventricular myocytes. Pflugers Arch 421:425–430PubMedCrossRef Mager S, Palti Y, Binah O (1992) Mechanism of hyperthyroidism-induced modulation of the L-type Ca2+ current in guinea pig ventricular myocytes. Pflugers Arch 421:425–430PubMedCrossRef
35.
go back to reference Watanabe H, Ma M, Washizuka T, Komura S, Yoshida T, Hosaka Y, Hatada K, Chinushi M, Yamamoto T, Watanabe K, Aizawa Y (2003) Thyroid hormone regulates mRNA expression and currents of ion channels in rat atrium. Biochem Biophys Res Commun 308:439–444PubMedCrossRef Watanabe H, Ma M, Washizuka T, Komura S, Yoshida T, Hosaka Y, Hatada K, Chinushi M, Yamamoto T, Watanabe K, Aizawa Y (2003) Thyroid hormone regulates mRNA expression and currents of ion channels in rat atrium. Biochem Biophys Res Commun 308:439–444PubMedCrossRef
36.
go back to reference Kashimura T, Kodama M, Tanaka K, Sonoda K, Watanabe S, Ohno Y, Tomita M, Obata H, Mitsuma W, Ito M, Hirono S, Hanawa H, Aizawa Y (2012) Mechanical alternans in human idiopathic dilated cardiomyopathy is caused with impaired force–frequency relationship and enhanced poststimulation potentiation. Heart Vessels. doi:10.1007/s00380-012-0251-8 PubMed Kashimura T, Kodama M, Tanaka K, Sonoda K, Watanabe S, Ohno Y, Tomita M, Obata H, Mitsuma W, Ito M, Hirono S, Hanawa H, Aizawa Y (2012) Mechanical alternans in human idiopathic dilated cardiomyopathy is caused with impaired force–frequency relationship and enhanced poststimulation potentiation. Heart Vessels. doi:10.​1007/​s00380-012-0251-8 PubMed
37.
go back to reference Yu H, Chang F, Cohen IS (1993) Pacemaker current exists in ventricular myocytes. Circ Res 72:232–236PubMedCrossRef Yu H, Chang F, Cohen IS (1993) Pacemaker current exists in ventricular myocytes. Circ Res 72:232–236PubMedCrossRef
38.
go back to reference Ranjan R, Chiamvimonvat N, Thakor NV, Tomaselli GF, Marban E (1998) Mechanism of anode break stimulation in the heart. Biophys J 74:1850–1863PubMedCrossRef Ranjan R, Chiamvimonvat N, Thakor NV, Tomaselli GF, Marban E (1998) Mechanism of anode break stimulation in the heart. Biophys J 74:1850–1863PubMedCrossRef
39.
go back to reference Cerbai E, Pino R, Porciatti F, Sani G, Toscano M, Maccherini M, Giunti G, Mugelli A (1997) Characterization of the hyperpolarization-activated current, I(f), in ventricular myocytes from human failing heart. Circulation 95:568–571PubMedCrossRef Cerbai E, Pino R, Porciatti F, Sani G, Toscano M, Maccherini M, Giunti G, Mugelli A (1997) Characterization of the hyperpolarization-activated current, I(f), in ventricular myocytes from human failing heart. Circulation 95:568–571PubMedCrossRef
40.
go back to reference Hoppe UC, Jansen E, Sudkamp M, Beuckelmann DJ (1998) Hyperpolarization-activated inward current in ventricular myocytes from normal and failing human hearts. Circulation 97:55–65PubMedCrossRef Hoppe UC, Jansen E, Sudkamp M, Beuckelmann DJ (1998) Hyperpolarization-activated inward current in ventricular myocytes from normal and failing human hearts. Circulation 97:55–65PubMedCrossRef
41.
go back to reference Cerbai E, Barbieri M, Mugelli A (1996) Occurrence and properties of the hyperpolarization-activated current I f in ventricular myocytes from normotensive and hypertensive rats during aging. Circulation 94:1674–1681PubMedCrossRef Cerbai E, Barbieri M, Mugelli A (1996) Occurrence and properties of the hyperpolarization-activated current I f in ventricular myocytes from normotensive and hypertensive rats during aging. Circulation 94:1674–1681PubMedCrossRef
42.
go back to reference Ceconi C, Comini L, Suffredini S, Stillitano F, Bouly M, Cerbai E, Mugelli A, Ferrari R (2011) Heart rate reduction with ivabradine prevents the global phenotype of left ventricular remodeling. Am J Physiol Heart Circ Physiol 300:366–373CrossRef Ceconi C, Comini L, Suffredini S, Stillitano F, Bouly M, Cerbai E, Mugelli A, Ferrari R (2011) Heart rate reduction with ivabradine prevents the global phenotype of left ventricular remodeling. Am J Physiol Heart Circ Physiol 300:366–373CrossRef
43.
go back to reference Suffredini S, Stillitano F, Comini L, Bouly M, Brogioni S, Ceconi C, Ferrari R, Mugelli A, Cerbai E (2012) Long-term treatment with ivabradine in post-myocardial infarcted rats counteracts f-channel overexpression. Br J Pharmacol 165:1457–1466PubMedCrossRef Suffredini S, Stillitano F, Comini L, Bouly M, Brogioni S, Ceconi C, Ferrari R, Mugelli A, Cerbai E (2012) Long-term treatment with ivabradine in post-myocardial infarcted rats counteracts f-channel overexpression. Br J Pharmacol 165:1457–1466PubMedCrossRef
Metadata
Title
Heart rate reduction with ivabradine prevents thyroid hormone-induced cardiac remodeling in rat
Authors
Bo Hyun Kim
Kyoung Im Cho
Seong Man Kim
Nari Kim
Jin Han
Jee Yeon Kim
In Ju Kim
Publication date
01-07-2013
Publisher
Springer Japan
Published in
Heart and Vessels / Issue 4/2013
Print ISSN: 0910-8327
Electronic ISSN: 1615-2573
DOI
https://doi.org/10.1007/s00380-012-0304-z

Other articles of this Issue 4/2013

Heart and Vessels 4/2013 Go to the issue