Skip to main content
Top
Published in: European Radiology 11/2022

Open Access 29-04-2022 | Artificial Intelligence | Neuro

Alzheimer resemblance atrophy index, BrainAGE, and normal pressure hydrocephalus score in the prediction of subtle cognitive decline: added value compared to existing MR imaging markers

Authors: Panteleimon Giannakopoulos, Marie-Louise Montandon, François R. Herrmann, Dennis Hedderich, Christian Gaser, Elias Kellner, Cristelle Rodriguez, Sven Haller

Published in: European Radiology | Issue 11/2022

Login to get access

Abstract

Objectives

Established visual brain MRI markers for dementia include hippocampal atrophy (mesio-temporal atrophy MTA), white matter lesions (Fazekas score), and number of cerebral microbleeds (CMBs). We assessed whether novel quantitative, artificial intelligence (AI)–based volumetric scores provide additional value in predicting subsequent cognitive decline in elderly controls.

Methods

A prospective study including 80 individuals (46 females, mean age 73.4 ± 3.5 years). 3T MR imaging was performed at baseline. Extensive neuropsychological assessment was performed at baseline and at 4.5-year follow-up. AI-based volumetric scores were derived from 3DT1: Alzheimer Disease Resemblance Atrophy Index (AD-RAI), Brain Age Gap Estimate (BrainAGE), and normal pressure hydrocephalus (NPH) index. Analyses included regression models between cognitive scores and imaging markers.

Results

AD-RAI score at baseline was associated with Corsi (visuospatial memory) decline (10.6% of cognitive variability in multiple regression models). After inclusion of MTA, CMB, and Fazekas scores simultaneously, the AD-RAI score remained as the sole valid predictor of the cognitive outcome explaining 16.7% of its variability. Its percentage reached 21.4% when amyloid positivity was considered an additional explanatory factor. BrainAGE score was associated with Trail Making B (executive functions) decrease (8.5% of cognitive variability). Among the conventional MRI markers, only the Fazekas score at baseline was positively related to the cognitive outcome (8.7% of cognitive variability). The addition of the BrainAGE score as an independent variable significantly increased the percentage of cognitive variability explained by the regression model (from 8.7 to 14%). The addition of amyloid positivity led to a further increase in this percentage reaching 21.8%.

Conclusions

The AI-based AD-RAI index and BrainAGE scores have limited but significant added value in predicting the subsequent cognitive decline in elderly controls when compared to the established visual MRI markers of brain aging, notably MTA, Fazekas score, and number of CMBs.

Key Points

AD-RAI score at baseline was associated with Corsi score (visuospatial memory) decline.
BrainAGE score was associated with Trail Making B (executive functions) decrease.
AD-RAI index and BrainAGE scores have limited but significant added value in predicting the subsequent cognitive decline in elderly controls when compared to the established visual MRI markers of brain aging, notably MTA, Fazekas score, and number of CMBs.
Appendix
Available only for authorised users
Literature
1.
go back to reference Scheltens P, Launer LJ, Barkhof F et al (1995) Visual assessment of medial temporal lobe atrophy on magnetic resonance imaging: interobserver reliability. J Neurol 242(9):557–560CrossRef Scheltens P, Launer LJ, Barkhof F et al (1995) Visual assessment of medial temporal lobe atrophy on magnetic resonance imaging: interobserver reliability. J Neurol 242(9):557–560CrossRef
2.
go back to reference Fazekas F, Chawluk JB, Alavi A et al (1987) MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol 149(2):351–356CrossRef Fazekas F, Chawluk JB, Alavi A et al (1987) MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol 149(2):351–356CrossRef
3.
go back to reference Ten Kate M, Barkhof F, Boccardi M et al (2017) Clinical validity of medial temporal atrophy as a biomarker for Alzheimer’s disease in the context of a structured 5-phase development framework. Neurobiol Aging 52:167–182 e1CrossRef Ten Kate M, Barkhof F, Boccardi M et al (2017) Clinical validity of medial temporal atrophy as a biomarker for Alzheimer’s disease in the context of a structured 5-phase development framework. Neurobiol Aging 52:167–182 e1CrossRef
4.
go back to reference Kloppenborg RP, Nederkoorn PJ, Geerlings MI et al (2014) Presence and progression of white matter hyperintensities and cognition: a meta-analysis. Neurology 82(23):2127–2138CrossRef Kloppenborg RP, Nederkoorn PJ, Geerlings MI et al (2014) Presence and progression of white matter hyperintensities and cognition: a meta-analysis. Neurology 82(23):2127–2138CrossRef
5.
go back to reference Prins ND, Scheltens P (2015) White matter hyperintensities, cognitive impairment and dementia: an update. Nat Rev Neurol 11(3):157–165CrossRef Prins ND, Scheltens P (2015) White matter hyperintensities, cognitive impairment and dementia: an update. Nat Rev Neurol 11(3):157–165CrossRef
6.
go back to reference Verdelho A, Madureira S, Moleiro C et al (2010) White matter changes and diabetes predict cognitive decline in the elderly: the LADIS study. Neurology 75(2):160–167CrossRef Verdelho A, Madureira S, Moleiro C et al (2010) White matter changes and diabetes predict cognitive decline in the elderly: the LADIS study. Neurology 75(2):160–167CrossRef
7.
go back to reference Akoudad S, Wolters FJ, Viswanathan A et al (2016) Association of Cerebral Microbleeds With Cognitive Decline and Dementia. JAMA Neurol 73(8):934–943CrossRef Akoudad S, Wolters FJ, Viswanathan A et al (2016) Association of Cerebral Microbleeds With Cognitive Decline and Dementia. JAMA Neurol 73(8):934–943CrossRef
8.
go back to reference Romero JR, Preis SR, Beiser A et al (2017) Cerebral microbleeds as predictors of mortality: the Framingham Heart Study. Stroke 48(3):781–783CrossRef Romero JR, Preis SR, Beiser A et al (2017) Cerebral microbleeds as predictors of mortality: the Framingham Heart Study. Stroke 48(3):781–783CrossRef
9.
go back to reference Ding J, Sigurðsson S, Jónsson PV et al (2017) Space and location of cerebral microbleeds, cognitive decline, and dementia in the community. Neurology 88(22):2089–2097CrossRef Ding J, Sigurðsson S, Jónsson PV et al (2017) Space and location of cerebral microbleeds, cognitive decline, and dementia in the community. Neurology 88(22):2089–2097CrossRef
10.
go back to reference Ten Kate M, Ingala S, Schwarz AJ et al (2018) Secondary prevention of Alzheimer’s dementia: neuroimaging contributions. Alzheimers Res Ther 10(1):112CrossRef Ten Kate M, Ingala S, Schwarz AJ et al (2018) Secondary prevention of Alzheimer’s dementia: neuroimaging contributions. Alzheimers Res Ther 10(1):112CrossRef
11.
go back to reference Aljondi R, Szoeke C, Steward C et al (2020) The effect of midlife cardiovascular risk factors on white matter hyperintensity volume and cognition two decades later in normal ageing women. Brain Imaging Behav 14(1):51–61CrossRef Aljondi R, Szoeke C, Steward C et al (2020) The effect of midlife cardiovascular risk factors on white matter hyperintensity volume and cognition two decades later in normal ageing women. Brain Imaging Behav 14(1):51–61CrossRef
12.
go back to reference Bauer CM, Cabral HJ, Killiany RJ (2018) Multimodal discrimination between normal aging, mild cognitive impairment and Alzheimer’s disease and prediction of cognitive decline. Diagnostics (Basel) 8(1):E14CrossRef Bauer CM, Cabral HJ, Killiany RJ (2018) Multimodal discrimination between normal aging, mild cognitive impairment and Alzheimer’s disease and prediction of cognitive decline. Diagnostics (Basel) 8(1):E14CrossRef
13.
go back to reference Daugherty AM, Raz N (2017) Incident risk and progression of cerebral microbleeds in healthy adults: a multi-occasion longitudinal study. Neurobiol Aging 59:22–29CrossRef Daugherty AM, Raz N (2017) Incident risk and progression of cerebral microbleeds in healthy adults: a multi-occasion longitudinal study. Neurobiol Aging 59:22–29CrossRef
14.
go back to reference Hirsiger S, Koppelmans V, Mérillat S et al (2017) Executive functions in healthy older adults are differentially related to macro- and microstructural white matter characteristics of the cerebral lobes. Front Aging Neurosci 9:373CrossRef Hirsiger S, Koppelmans V, Mérillat S et al (2017) Executive functions in healthy older adults are differentially related to macro- and microstructural white matter characteristics of the cerebral lobes. Front Aging Neurosci 9:373CrossRef
15.
go back to reference Meier IB, Gu Y, Guzaman VA et al (2014) Lobar microbleeds are associated with a decline in executive functioning in older adults. Cerebrovasc Dis 38(5):377–383CrossRef Meier IB, Gu Y, Guzaman VA et al (2014) Lobar microbleeds are associated with a decline in executive functioning in older adults. Cerebrovasc Dis 38(5):377–383CrossRef
16.
go back to reference Montandon ML, Herrmann FR, Garibotto V et al (2020) Microbleeds and medial temporal atrophy determine cognitive trajectories in normal aging: a longitudinal PET-MRI study. J Alzheimers Dis 77(4):1431–1442CrossRef Montandon ML, Herrmann FR, Garibotto V et al (2020) Microbleeds and medial temporal atrophy determine cognitive trajectories in normal aging: a longitudinal PET-MRI study. J Alzheimers Dis 77(4):1431–1442CrossRef
17.
go back to reference Arvanitakis Z, Fleischman DA, Arfanakis K et al (2016) Association of white matter hyperintensities and gray matter volume with cognition in older individuals without cognitive impairment. Brain Struct Funct 221(4):2135–2146CrossRef Arvanitakis Z, Fleischman DA, Arfanakis K et al (2016) Association of white matter hyperintensities and gray matter volume with cognition in older individuals without cognitive impairment. Brain Struct Funct 221(4):2135–2146CrossRef
18.
go back to reference Li L, Wu DH, Li HQ et al (2020) Association of cerebral microbleeds with cognitive decline: a longitudinal study. J Alzheimers Dis 75(2):571–579CrossRef Li L, Wu DH, Li HQ et al (2020) Association of cerebral microbleeds with cognitive decline: a longitudinal study. J Alzheimers Dis 75(2):571–579CrossRef
19.
go back to reference De Reuck JL, Deramecourt V, Auger F et al (2015) The significance of cortical cerebellar microbleeds and microinfarcts in neurodegenerative and cerebrovascular diseases. A post-mortem 7.0-tesla magnetic resonance study with neuropathological correlates. Cerebrovasc Dis 39(2):138–143CrossRef De Reuck JL, Deramecourt V, Auger F et al (2015) The significance of cortical cerebellar microbleeds and microinfarcts in neurodegenerative and cerebrovascular diseases. A post-mortem 7.0-tesla magnetic resonance study with neuropathological correlates. Cerebrovasc Dis 39(2):138–143CrossRef
20.
go back to reference Kloppel S, Stonnington CM, Chu C et al (2008) Automatic classification of MR scans in Alzheimer’s disease. Brain 131(Pt 3):681–689CrossRef Kloppel S, Stonnington CM, Chu C et al (2008) Automatic classification of MR scans in Alzheimer’s disease. Brain 131(Pt 3):681–689CrossRef
21.
go back to reference Kloppel S, Yang S, Kellner E et al (2018) Voxel-wise deviations from healthy aging for the detection of region-specific atrophy. Neuroimage Clin 20:851–860CrossRef Kloppel S, Yang S, Kellner E et al (2018) Voxel-wise deviations from healthy aging for the detection of region-specific atrophy. Neuroimage Clin 20:851–860CrossRef
22.
go back to reference Orru G, Pettersson-Yeo W, Marquand AF et al (2012) Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci Biobehav Rev 36(4):1140–1152CrossRef Orru G, Pettersson-Yeo W, Marquand AF et al (2012) Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci Biobehav Rev 36(4):1140–1152CrossRef
23.
go back to reference Mai Y, Yu Q, Zhu F et al (2021) AD resemblance atrophy index as a diagnostic biomarker for Alzheimer’s disease: a retrospective clinical and biological validation. J Alzheimers Dis 79(3):1023–1032CrossRef Mai Y, Yu Q, Zhu F et al (2021) AD resemblance atrophy index as a diagnostic biomarker for Alzheimer’s disease: a retrospective clinical and biological validation. J Alzheimers Dis 79(3):1023–1032CrossRef
24.
go back to reference Dickerson BC, Bakkour A, Salat DH et al (2009) The cortical signature of Alzheimer’s disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb Cortex 19(3):497–510CrossRef Dickerson BC, Bakkour A, Salat DH et al (2009) The cortical signature of Alzheimer’s disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb Cortex 19(3):497–510CrossRef
25.
go back to reference Franke K, Ziegler G, Klöppel S et al (2010) Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. Neuroimage 50(3):883–892CrossRef Franke K, Ziegler G, Klöppel S et al (2010) Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. Neuroimage 50(3):883–892CrossRef
26.
go back to reference Cole JH, Franke K (2017) Predicting age using neuroimaging: innovative brain ageing biomarkers. Trends Neurosci 40(12):681–690CrossRef Cole JH, Franke K (2017) Predicting age using neuroimaging: innovative brain ageing biomarkers. Trends Neurosci 40(12):681–690CrossRef
27.
go back to reference Cole JH, Poudel RPK, Tsagkrasoulis D et al (2017) Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. Neuroimage 163:115–124CrossRef Cole JH, Poudel RPK, Tsagkrasoulis D et al (2017) Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. Neuroimage 163:115–124CrossRef
28.
go back to reference Rau A, Kim S, Yang S et al (2021) SVM-based normal pressure hydrocephalus detection. Clin Neuroradiol 31(4):1029–1035CrossRef Rau A, Kim S, Yang S et al (2021) SVM-based normal pressure hydrocephalus detection. Clin Neuroradiol 31(4):1029–1035CrossRef
29.
go back to reference Graff-Radford J, Gunter JL, Jones DT et al (2019) Cerebrospinal fluid dynamics disorders: relationship to Alzheimer biomarkers and cognition. Neurology 93(24):e2237–e2246CrossRef Graff-Radford J, Gunter JL, Jones DT et al (2019) Cerebrospinal fluid dynamics disorders: relationship to Alzheimer biomarkers and cognition. Neurology 93(24):e2237–e2246CrossRef
30.
go back to reference Halperin JJ, Pascual-Leone A, Saper CB (2020) Symptomatic hydrocephalus with normal cerebrospinal pressure and Alzheimer’s disease. Ann Neurol 88(4):685–687CrossRef Halperin JJ, Pascual-Leone A, Saper CB (2020) Symptomatic hydrocephalus with normal cerebrospinal pressure and Alzheimer’s disease. Ann Neurol 88(4):685–687CrossRef
31.
go back to reference Montandon ML, Herrmann FR, Garibotto V et al (2020) Determinants of mesial temporal lobe volume loss in older individuals with preserved cognition: a longitudinal PET amyloid study. Neurobiol Aging 87:108–114CrossRef Montandon ML, Herrmann FR, Garibotto V et al (2020) Determinants of mesial temporal lobe volume loss in older individuals with preserved cognition: a longitudinal PET amyloid study. Neurobiol Aging 87:108–114CrossRef
32.
go back to reference Giannakopoulos P, Rodriguez C, Montandon ML et al (2020) Less agreeable, better preserved? A PET amyloid and MRI study in a community-based cohort. Neurobiol Aging 89:24–31CrossRef Giannakopoulos P, Rodriguez C, Montandon ML et al (2020) Less agreeable, better preserved? A PET amyloid and MRI study in a community-based cohort. Neurobiol Aging 89:24–31CrossRef
33.
go back to reference Zanchi D, Giannakopoulos P, Borgwardt S et al (2017) Hippocampal and amygdala gray matter loss in elderly controls with subtle cognitive decline. Front Aging Neurosci 9:50CrossRef Zanchi D, Giannakopoulos P, Borgwardt S et al (2017) Hippocampal and amygdala gray matter loss in elderly controls with subtle cognitive decline. Front Aging Neurosci 9:50CrossRef
34.
go back to reference Xekardaki A, Rodriguez C, Montandon ML et al (2015) Arterial spin labeling may contribute to the prediction of cognitive deterioration in healthy elderly individuals. Radiology 274(2):490–499CrossRef Xekardaki A, Rodriguez C, Montandon ML et al (2015) Arterial spin labeling may contribute to the prediction of cognitive deterioration in healthy elderly individuals. Radiology 274(2):490–499CrossRef
35.
go back to reference Scheltens P, Barkhof F, Leys D et al (1995) Histopathologic correlates of white matter changes on MRI in Alzheimer’s disease and normal aging. Neurology 45(5):883–888CrossRef Scheltens P, Barkhof F, Leys D et al (1995) Histopathologic correlates of white matter changes on MRI in Alzheimer’s disease and normal aging. Neurology 45(5):883–888CrossRef
36.
go back to reference Barnaure I, Montandon ML, Rodriguez C et al (2017) Clinicoradiologic correlations of cerebral microbleeds in advanced age. AJNR Am J Neuroradiol 38(1):39–45CrossRef Barnaure I, Montandon ML, Rodriguez C et al (2017) Clinicoradiologic correlations of cerebral microbleeds in advanced age. AJNR Am J Neuroradiol 38(1):39–45CrossRef
37.
go back to reference Haller S, Vernooij MW, Kuijer JPA et al (2018) Cerebral Microbleeds: Imaging and Clinical Significance. Radiology 287(1):11–28CrossRef Haller S, Vernooij MW, Kuijer JPA et al (2018) Cerebral Microbleeds: Imaging and Clinical Significance. Radiology 287(1):11–28CrossRef
38.
go back to reference Tipping ME (2000) The relevance vector machine Tipping ME (2000) The relevance vector machine
39.
go back to reference Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1(Jun):211–244 Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1(Jun):211–244
40.
go back to reference Franke K, Gaser C (2019) Ten years of BrainAGE as a neuroimaging biomarker of brain aging: what insights have we gained. Front Neurol 10:789CrossRef Franke K, Gaser C (2019) Ten years of BrainAGE as a neuroimaging biomarker of brain aging: what insights have we gained. Front Neurol 10:789CrossRef
41.
go back to reference Buckley CJ, Sherwin PF, Smith AP et al (2017) Validation of an electronic image reader training programme for interpretation of [18F]flutemetamol β-amyloid PET brain images. Nucl Med Commun 38(3):234–241CrossRef Buckley CJ, Sherwin PF, Smith AP et al (2017) Validation of an electronic image reader training programme for interpretation of [18F]flutemetamol β-amyloid PET brain images. Nucl Med Commun 38(3):234–241CrossRef
42.
go back to reference Varrone A, Asenbaum S, Vander Borght T et al (2009) EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging 36(12):2103–2110CrossRef Varrone A, Asenbaum S, Vander Borght T et al (2009) EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging 36(12):2103–2110CrossRef
43.
go back to reference Garibotto V, Montandon ML, Viaud CT et al (2013) Regions of interest-based discriminant analysis of DaTSCAN SPECT and FDG-PET for the classification of dementia. Clin Nucl Med 38(3):e112–e117CrossRef Garibotto V, Montandon ML, Viaud CT et al (2013) Regions of interest-based discriminant analysis of DaTSCAN SPECT and FDG-PET for the classification of dementia. Clin Nucl Med 38(3):e112–e117CrossRef
44.
go back to reference Zhao L, Luo Y, Lew D et al (2019) Risk estimation before progression to mild cognitive impairment and Alzheimer’s disease: an AD resemblance atrophy index. Aging (Albany NY) 11(16):6217–6236CrossRef Zhao L, Luo Y, Lew D et al (2019) Risk estimation before progression to mild cognitive impairment and Alzheimer’s disease: an AD resemblance atrophy index. Aging (Albany NY) 11(16):6217–6236CrossRef
45.
go back to reference Liu W, Au LWC, Abrigo J et al (2021) MRI-based Alzheimer’s disease-resemblance atrophy index in the detection of preclinical and prodromal Alzheimer’s disease. Aging (Albany NY) 13(10):13496–13514CrossRef Liu W, Au LWC, Abrigo J et al (2021) MRI-based Alzheimer’s disease-resemblance atrophy index in the detection of preclinical and prodromal Alzheimer’s disease. Aging (Albany NY) 13(10):13496–13514CrossRef
46.
go back to reference Moradi E, Pepe A, Gaser C et al (2015) Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. Neuroimage 104:398–412CrossRef Moradi E, Pepe A, Gaser C et al (2015) Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. Neuroimage 104:398–412CrossRef
47.
go back to reference Wang J, Knol MJ, Tiulpin A et al (2019) Gray matter age prediction as a biomarker for risk of dementia. Proc Natl Acad Sci U S A 116(42):21213–21218CrossRef Wang J, Knol MJ, Tiulpin A et al (2019) Gray matter age prediction as a biomarker for risk of dementia. Proc Natl Acad Sci U S A 116(42):21213–21218CrossRef
48.
go back to reference Bittner N, Jockwitz C, Franke K et al (2021) When your brain looks older than expected: combined lifestyle risk and BrainAGE. Brain Struct Funct 226(3):621–645CrossRef Bittner N, Jockwitz C, Franke K et al (2021) When your brain looks older than expected: combined lifestyle risk and BrainAGE. Brain Struct Funct 226(3):621–645CrossRef
49.
go back to reference Hedderich DM, Menegaux A, Schmitz-Koep B et al (2021) Increased brain age gap estimate (BrainAGE) in young adults after premature birth. Front Aging Neurosci 13:653365CrossRef Hedderich DM, Menegaux A, Schmitz-Koep B et al (2021) Increased brain age gap estimate (BrainAGE) in young adults after premature birth. Front Aging Neurosci 13:653365CrossRef
Metadata
Title
Alzheimer resemblance atrophy index, BrainAGE, and normal pressure hydrocephalus score in the prediction of subtle cognitive decline: added value compared to existing MR imaging markers
Authors
Panteleimon Giannakopoulos
Marie-Louise Montandon
François R. Herrmann
Dennis Hedderich
Christian Gaser
Elias Kellner
Cristelle Rodriguez
Sven Haller
Publication date
29-04-2022
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 11/2022
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-022-08798-0

Other articles of this Issue 11/2022

European Radiology 11/2022 Go to the issue