Skip to main content
Top
Published in: European Radiology 8/2021

Open Access 01-08-2021 | Breast Cancer | Breast

Can artificial intelligence reduce the interval cancer rate in mammography screening?

Authors: Kristina Lång, Solveig Hofvind, Alejandro Rodríguez-Ruiz, Ingvar Andersson

Published in: European Radiology | Issue 8/2021

Login to get access

Abstract

Objectives

To investigate whether artificial intelligence (AI) can reduce interval cancer in mammography screening.

Materials and methods

Preceding screening mammograms of 429 consecutive women diagnosed with interval cancer in Southern Sweden between 2013 and 2017 were analysed with a deep learning–based AI system. The system assigns a risk score from 1 to 10. Two experienced breast radiologists reviewed and classified the cases in consensus as true negative, minimal signs or false negative and assessed whether the AI system correctly localised the cancer. The potential reduction of interval cancer was calculated at different risk score thresholds corresponding to approximately 10%, 4% and 1% recall rates.

Results

A statistically significant correlation between interval cancer classification groups and AI risk score was observed (p < .0001). AI scored one in three (143/429) interval cancer with risk score 10, of which 67% (96/143) were either classified as minimal signs or false negative. Of these, 58% (83/143) were correctly located by AI, and could therefore potentially be detected at screening with the aid of AI, resulting in a 19.3% (95% CI 15.9–23.4) reduction of interval cancer. At 4% and 1% recall thresholds, the reduction of interval cancer was 11.2% (95% CI 8.5–14.5) and 4.7% (95% CI 3.0–7.1). The corresponding reduction of interval cancer with grave outcome (women who died or with stage IV disease) at risk score 10 was 23% (8/35; 95% CI 12–39).

Conclusion

The use of AI in screen reading has the potential to reduce the rate of interval cancer without supplementary screening modalities.

Key Points

• Retrospective study showed that AI detected 19% of interval cancer at the preceding screening exam that in addition showed at least minimal signs of malignancy. Importantly, these were correctly localised by AI, thus obviating supplementary screening modalities.
AI could potentially reduce a proportion of particularly aggressive interval cancers.
There was a correlation between AI risk score and interval cancer classified as true negative, minimal signs or false negative.
Literature
21.
go back to reference Mordang J-J, Janssen T, Bria A, Kooi T, Gubern-Mérida A, Karssemeijer N (2016) Automatic microcalcification detection in multi-vendor mammography using convolutional neural networks. In: Tingberg A, Lång K, Timberg P (eds) Breast imaging. Springer International Publishing, Cham, pp 35–42CrossRef Mordang J-J, Janssen T, Bria A, Kooi T, Gubern-Mérida A, Karssemeijer N (2016) Automatic microcalcification detection in multi-vendor mammography using convolutional neural networks. In: Tingberg A, Lång K, Timberg P (eds) Breast imaging. Springer International Publishing, Cham, pp 35–42CrossRef
30.
go back to reference Christiana B, Alejandro R-R, Christoph M, Nico K, Sylvia HH-K (2020) Going from double to single reading for screening exams labeled as likely normal by AI: what is the impact?, Proc. SPIE 11513, 15th International Workshop on Breast Imaging (IWBI2020) 115130D. https://doi.org/10.1117/12.2564179 Christiana B, Alejandro R-R, Christoph M, Nico K, Sylvia HH-K (2020) Going from double to single reading for screening exams labeled as likely normal by AI: what is the impact?, Proc. SPIE 11513, 15th International Workshop on Breast Imaging (IWBI2020) 115130D. https://​doi.​org/​10.​1117/​12.​2564179
32.
Metadata
Title
Can artificial intelligence reduce the interval cancer rate in mammography screening?
Authors
Kristina Lång
Solveig Hofvind
Alejandro Rodríguez-Ruiz
Ingvar Andersson
Publication date
01-08-2021
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 8/2021
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-021-07686-3

Other articles of this Issue 8/2021

European Radiology 8/2021 Go to the issue