Skip to main content
Top
Published in: European Radiology 11/2020

Open Access 01-11-2020 | Idiopathic Pulmonary Fibrosis | Imaging Informatics and Artificial Intelligence

Deep learning in interstitial lung disease—how long until daily practice

Authors: Ana Adriana Trusculescu, Diana Manolescu, Emanuela Tudorache, Cristian Oancea

Published in: European Radiology | Issue 11/2020

Login to get access

Abstract

Interstitial lung diseases are a diverse group of disorders that involve inflammation and fibrosis of interstitium, with clinical, radiological, and pathological overlapping features. These are an important cause of morbidity and mortality among lung diseases. This review describes computer-aided diagnosis systems centered on deep learning approaches that improve the diagnostic of interstitial lung diseases. We highlighted the challenges and the implementation of important daily practice, especially in the early diagnosis of idiopathic pulmonary fibrosis (IPF). Developing a convolutional neuronal network (CNN) that could be deployed on any computer station and be accessible to non-academic centers is the next frontier that needs to be crossed. In the future, early diagnosis of IPF should be possible. CNN might not only spare the human resources but also will reduce the costs spent on all the social and healthcare aspects of this deadly disease.
Key Points
• Deep learning algorithms are used in pattern recognition of different interstitial lung diseases.
• High-resolution computed tomography plays a central role in the diagnosis and in the management of all interstitial lung diseases, especially fibrotic lung disease.
• Developing an accessible algorithm that could be deployed on any computer station and be used in non-academic centers is the next frontier in the early diagnosis of idiopathic pulmonary fibrosis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Raghu G, Weycker D, Edelsberg J, Bradford WZ, Oster G (2006) Incidence and prevalence of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 174(7):810–816 Raghu G, Weycker D, Edelsberg J, Bradford WZ, Oster G (2006) Incidence and prevalence of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 174(7):810–816
2.
go back to reference Doi K (2007) Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph 31(4-5):198–211CrossRef Doi K (2007) Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph 31(4-5):198–211CrossRef
3.
go back to reference Takahashi R, Kajikawa Y (2017) Computer-aided diagnosis: a survey with bibliometric analysis. Int J Med Inform 101:58–67CrossRef Takahashi R, Kajikawa Y (2017) Computer-aided diagnosis: a survey with bibliometric analysis. Int J Med Inform 101:58–67CrossRef
6.
go back to reference Soffer S, Ben-Cohen A, Shimon O, Amitai MM, Greenspan H, Klang E (2019) Convolutional neural networks for radiologic images: a radiologist’s guide. Radiology 290(3):590–606 Soffer S, Ben-Cohen A, Shimon O, Amitai MM, Greenspan H, Klang E (2019) Convolutional neural networks for radiologic images: a radiologist’s guide. Radiology 290(3):590–606
7.
go back to reference LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef
8.
go back to reference Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117CrossRef Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117CrossRef
9.
go back to reference Murphy A, Skalski M, Gaillard F (2018) The utilisation of convolutional neural networks in detecting pulmonary nodules: a review. Br J Radiol 91(1090):20180028CrossRef Murphy A, Skalski M, Gaillard F (2018) The utilisation of convolutional neural networks in detecting pulmonary nodules: a review. Br J Radiol 91(1090):20180028CrossRef
10.
go back to reference Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. Proceedings of the 27th International Conference on Neural Information Processing Systems 2:3104–3112 Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. Proceedings of the 27th International Conference on Neural Information Processing Systems 2:3104–3112
11.
go back to reference Mikolov T, Deoras A, Povey D, Burget L, Cernocky J (2011) Strategies for training large scale neural network language models. 2011 IEEE Workshop on Automatic Speech Recognition & Understanding 196–201 Mikolov T, Deoras A, Povey D, Burget L, Cernocky J (2011) Strategies for training large scale neural network language models. 2011 IEEE Workshop on Automatic Speech Recognition & Understanding 196–201
12.
go back to reference Cireşan D, Meier U, Masci J, Schmidhuber S (2012) Multi-column deep neural network for traffic sign classification. Neural Netw 32:333–338 Cireşan D, Meier U, Masci J, Schmidhuber S (2012) Multi-column deep neural network for traffic sign classification. Neural Netw 32:333–338
13.
go back to reference Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160(1):106–154.2CrossRef Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160(1):106–154.2CrossRef
14.
go back to reference Fukushima K (1980) Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern 36(4):193–202CrossRef Fukushima K (1980) Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern 36(4):193–202CrossRef
15.
go back to reference LeCun Y, Boser B, Denker JS et al (1990) Handwritten digit recognition with a back-propagation network. Adv Neural Inf Process Syst 2:396–404 LeCun Y, Boser B, Denker JS et al (1990) Handwritten digit recognition with a back-propagation network. Adv Neural Inf Process Syst 2:396–404
16.
go back to reference Krizhevsky A, Sutskever I, Hintonet GE (2011) ImageNet classification with deep convolutional neural networks. NIPS’12 Proceedings of the 25th International Conference on Neural Information Processing Systems 1:1097–1105 Krizhevsky A, Sutskever I, Hintonet GE (2011) ImageNet classification with deep convolutional neural networks. NIPS’12 Proceedings of the 25th International Conference on Neural Information Processing Systems 1:1097–1105
17.
go back to reference Lee JG, Jun S, Cho YW et al (2017) Deep learning in medical imaging: general overview. Korean J Radiol 18(4):570–584CrossRef Lee JG, Jun S, Cho YW et al (2017) Deep learning in medical imaging: general overview. Korean J Radiol 18(4):570–584CrossRef
18.
go back to reference Lo SCB, Lin JS, Freedman MT, Mun SK (1993) Computer-assisted diagnosis of lung nodule detection using an artificial convolution neural network. Proc SPIE Int Soc Opt Eng 1898:859–869 Lo SCB, Lin JS, Freedman MT, Mun SK (1993) Computer-assisted diagnosis of lung nodule detection using an artificial convolution neural network. Proc SPIE Int Soc Opt Eng 1898:859–869
19.
go back to reference Sahiner B, Chan HP, Petrick N et al (1996) Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images. IEEE Trans Med Imaging 15(5):598–610CrossRef Sahiner B, Chan HP, Petrick N et al (1996) Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images. IEEE Trans Med Imaging 15(5):598–610CrossRef
20.
go back to reference Döhler F, Mormann F, Weber B, Elger CE, Lehnertz K (2008) A cellular neural network based method for classification of magnetic resonance images: towards an automated detection of hippocampal sclerosis. J Neurosci Methods 170(2):324–331 Döhler F, Mormann F, Weber B, Elger CE, Lehnertz K (2008) A cellular neural network based method for classification of magnetic resonance images: towards an automated detection of hippocampal sclerosis. J Neurosci Methods 170(2):324–331
21.
go back to reference Christodoulidis S, Anthimopoulos M, Ebner L et al (2017) Multi-source transfer learning with convolutional neural networks for lung pattern analysis. IEEE J Biomed Health Inform 21(1):76–84CrossRef Christodoulidis S, Anthimopoulos M, Ebner L et al (2017) Multi-source transfer learning with convolutional neural networks for lung pattern analysis. IEEE J Biomed Health Inform 21(1):76–84CrossRef
22.
go back to reference Bar Y, Diamant I, Wolf L et al (2015) Deep learning with non-medical training used for chest pathology identification. Proc. SPIE 9414, Medical Imaging 2015: Computer-Aided Diagnosis Bar Y, Diamant I, Wolf L et al (2015) Deep learning with non-medical training used for chest pathology identification. Proc. SPIE 9414, Medical Imaging 2015: Computer-Aided Diagnosis
23.
go back to reference Shin HC, Roth HR, Gao M et al (2016) Deep convolutional neural networks for computer aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 35(5):1285–1298CrossRef Shin HC, Roth HR, Gao M et al (2016) Deep convolutional neural networks for computer aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 35(5):1285–1298CrossRef
24.
go back to reference Suzuki K (2017) Overview of deep learning in medical imaging. Radiol Phys Technol 10(3):257–273CrossRef Suzuki K (2017) Overview of deep learning in medical imaging. Radiol Phys Technol 10(3):257–273CrossRef
25.
go back to reference Esteva A, Kuprel B, Novoa RA et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118CrossRef Esteva A, Kuprel B, Novoa RA et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118CrossRef
26.
go back to reference Prasoon A, Petersen K, Igel C, Lauze F, Dam E, Nielsen M (2013) Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. Med Image Comput Comput Assist Interv 16(Pt 2):246–253 Prasoon A, Petersen K, Igel C, Lauze F, Dam E, Nielsen M (2013) Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. Med Image Comput Comput Assist Interv 16(Pt 2):246–253
27.
go back to reference Pereira S, Pinto A, Alves V, Silva CA (2016) Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 35(5):1240–1251 Pereira S, Pinto A, Alves V, Silva CA (2016) Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 35(5):1240–1251
28.
go back to reference Han S, Kang HK, Jeong JY et al (2017) A deep learning framework for supporting the classification of breast lesions in ultrasound images. Phys Med Biol 62(19):7714–7728CrossRef Han S, Kang HK, Jeong JY et al (2017) A deep learning framework for supporting the classification of breast lesions in ultrasound images. Phys Med Biol 62(19):7714–7728CrossRef
29.
go back to reference Kooi T, Litjens G, van Ginneken B et al (2017) Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal 35:303–312CrossRef Kooi T, Litjens G, van Ginneken B et al (2017) Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal 35:303–312CrossRef
30.
go back to reference Jiang F, Jiang Y, Zhi H et al (2017) Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol 2(4):230–243CrossRef Jiang F, Jiang Y, Zhi H et al (2017) Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol 2(4):230–243CrossRef
31.
go back to reference Ciompi F, de Hoop B, van Riel SJ et al (2015) Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box. Med Image Anal 26(1):195–202CrossRef Ciompi F, de Hoop B, van Riel SJ et al (2015) Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box. Med Image Anal 26(1):195–202CrossRef
32.
go back to reference Tu X, Xie M, Gao J et al (2017) Automatic categorization and scoring of solid, part-solid and non-solid pulmonary nodules in CT images with convolutional neural network. Sci Rep 7(1):8533CrossRef Tu X, Xie M, Gao J et al (2017) Automatic categorization and scoring of solid, part-solid and non-solid pulmonary nodules in CT images with convolutional neural network. Sci Rep 7(1):8533CrossRef
33.
go back to reference Lopes UK, Valiati JF (2017) Pre-trained convolutional neural networks as feature extractors for tuberculosis detection. Comput Biol Med 89:135–143CrossRef Lopes UK, Valiati JF (2017) Pre-trained convolutional neural networks as feature extractors for tuberculosis detection. Comput Biol Med 89:135–143CrossRef
34.
go back to reference Cicero M, Bilbily A, Colak E et al (2017) Training and validating a deep convolutional neural network for computer-aided detection and classification of abnormalities on frontal chest radiographs. Invest Radiol 52(5):281–287CrossRef Cicero M, Bilbily A, Colak E et al (2017) Training and validating a deep convolutional neural network for computer-aided detection and classification of abnormalities on frontal chest radiographs. Invest Radiol 52(5):281–287CrossRef
36.
go back to reference Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S (2016) Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging 35(5):1207–1216 Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S (2016) Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging 35(5):1207–1216
37.
go back to reference Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. Comput Vis Pattern Recognit arXiv:1409–1556 Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. Comput Vis Pattern Recognit arXiv:1409–1556
38.
go back to reference Li Q, Cai W, Wang X, Zhou Y, Feng DD, Chen M (2014) Medical image classification with convolutional neural network. IEEE. 13th International Conference on Control Automation Robotics & Vision (ICARCV) pp 844–848 Li Q, Cai W, Wang X, Zhou Y, Feng DD, Chen M (2014) Medical image classification with convolutional neural network. IEEE. 13th International Conference on Control Automation Robotics & Vision (ICARCV) pp 844–848
39.
go back to reference Li Q, Cai W, Feng DD (2013) Lung image patch classification with automatic feature learning. Conf Proc IEEE Eng Med Biol Soc 2013:6079–6082 Li Q, Cai W, Feng DD (2013) Lung image patch classification with automatic feature learning. Conf Proc IEEE Eng Med Biol Soc 2013:6079–6082
40.
go back to reference Kim GB, Jung KH, Lee Y et al (2018) Comparison of shallow and deep learning methods on classifying the regional pattern of diffuse lung disease. J Digit Imaging 31(4):415–424CrossRef Kim GB, Jung KH, Lee Y et al (2018) Comparison of shallow and deep learning methods on classifying the regional pattern of diffuse lung disease. J Digit Imaging 31(4):415–424CrossRef
41.
go back to reference Wang Q, Zheng Y, Yang G, Jin W, Chen X, Yin Y (2018) Multiscale rotation-invariant convolutional neural networks for lung texture classification. IEEE J Biomed Health Inform 22(1):184–195 Wang Q, Zheng Y, Yang G, Jin W, Chen X, Yin Y (2018) Multiscale rotation-invariant convolutional neural networks for lung texture classification. IEEE J Biomed Health Inform 22(1):184–195
42.
go back to reference Gao M, Bagci U, Lu L et al (2018) Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks. Comput Methods Biomech Biomed Eng Imaging Vis 6(1):1–6CrossRef Gao M, Bagci U, Lu L et al (2018) Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks. Comput Methods Biomech Biomed Eng Imaging Vis 6(1):1–6CrossRef
43.
go back to reference Wang Z, Gu S, Leader JK et al (2013) Optimal threshold in CT quantification of emphysema. Eur Radiol 23(4):975–984CrossRef Wang Z, Gu S, Leader JK et al (2013) Optimal threshold in CT quantification of emphysema. Eur Radiol 23(4):975–984CrossRef
44.
go back to reference Bae HJ, Kim CW, Kim N et al (2018) A perlin noise-based augmentation strategy for deep learning with small data samples of HRCT images. Sci Rep 8(1):17687CrossRef Bae HJ, Kim CW, Kim N et al (2018) A perlin noise-based augmentation strategy for deep learning with small data samples of HRCT images. Sci Rep 8(1):17687CrossRef
45.
go back to reference Raghu G, Collard HR, Egan JJ et al (2011) An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 183:788–824CrossRef Raghu G, Collard HR, Egan JJ et al (2011) An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 183:788–824CrossRef
46.
go back to reference Lynch DA, Sverzellati N, Travis WD et al (2018) Diagnostic criteria for idiopathic pulmonary fibrosis: a Fleischner Society White Paper. Lancet Respir Med 6:138–153CrossRef Lynch DA, Sverzellati N, Travis WD et al (2018) Diagnostic criteria for idiopathic pulmonary fibrosis: a Fleischner Society White Paper. Lancet Respir Med 6:138–153CrossRef
47.
go back to reference Gruden JF (2016) CT in idiopathic pulmonary fibrosis: diagnosis and beyond. AJR Am J Roentgenol 206:495–507CrossRef Gruden JF (2016) CT in idiopathic pulmonary fibrosis: diagnosis and beyond. AJR Am J Roentgenol 206:495–507CrossRef
48.
go back to reference Walsh SL, Calandriello L, Sverzellati N, Wells AU, Hansell DM, UIP Observer Consort (2016) Interobserver agreement for the ATS/ERS/JRS/ALAT criteria for a UIP pattern on CT. Thorax 71:45–51 Walsh SL, Calandriello L, Sverzellati N, Wells AU, Hansell DM, UIP Observer Consort (2016) Interobserver agreement for the ATS/ERS/JRS/ALAT criteria for a UIP pattern on CT. Thorax 71:45–51
49.
go back to reference Walsh SLF, Wells AU, Desai SR et al (2016) Multicentre evaluation of multidisciplinary team meeting agreement on diagnosis in diffuse parenchymal lung disease: a case-cohort study. Lancet Respir Med 4:557–565CrossRef Walsh SLF, Wells AU, Desai SR et al (2016) Multicentre evaluation of multidisciplinary team meeting agreement on diagnosis in diffuse parenchymal lung disease: a case-cohort study. Lancet Respir Med 4:557–565CrossRef
50.
go back to reference Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4, Inception-ResNet and the impact of residual connections on learning. Thirty-First AAAI Conference on Artificial Intelligence; San Francisco, CA Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4, Inception-ResNet and the impact of residual connections on learning. Thirty-First AAAI Conference on Artificial Intelligence; San Francisco, CA
51.
go back to reference Kaiming H, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); Las Vegas, NV; June 27–30, 2016, pp 770–78 Kaiming H, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); Las Vegas, NV; June 27–30, 2016, pp 770–78
52.
go back to reference Costabel U, Albera C, Lancaster LH et al (2017) An open-label study of the long-term safety of pirfenidone in patients with idiopathic pulmonary fibrosis (RECAP). Respiration 94(5):408–415CrossRef Costabel U, Albera C, Lancaster LH et al (2017) An open-label study of the long-term safety of pirfenidone in patients with idiopathic pulmonary fibrosis (RECAP). Respiration 94(5):408–415CrossRef
53.
go back to reference Richeldi L, Du Bois RM, Raghu G et al (2014) Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med 370(22):2071–2082CrossRef Richeldi L, Du Bois RM, Raghu G et al (2014) Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med 370(22):2071–2082CrossRef
54.
go back to reference Crestani B, Huggins JT, Kaye M et al (2019) Long-term safety and tolerability of nintedanib in patients with idiopathic pulmonary fibrosis: results from the open-label extension study, INPULSIS-ON. Lancet Respir Med 7(1):60–68CrossRef Crestani B, Huggins JT, Kaye M et al (2019) Long-term safety and tolerability of nintedanib in patients with idiopathic pulmonary fibrosis: results from the open-label extension study, INPULSIS-ON. Lancet Respir Med 7(1):60–68CrossRef
55.
go back to reference Costabel U, Albera C, Glassberg MK et al (2019) Effect of pirfenidone in patients with more advanced idiopathic pulmonary fibrosis. Respir Res 20(1):55CrossRef Costabel U, Albera C, Glassberg MK et al (2019) Effect of pirfenidone in patients with more advanced idiopathic pulmonary fibrosis. Respir Res 20(1):55CrossRef
57.
go back to reference Ley B, Bradford WZ, Weycker D, Vittinghoff E, du Bois RM, Collard HR (2015) Unified baseline and longitudinal mortality prediction in idiopathic pulmonary fibrosis. Eur Respir J 45:1374–1381 Ley B, Bradford WZ, Weycker D, Vittinghoff E, du Bois RM, Collard HR (2015) Unified baseline and longitudinal mortality prediction in idiopathic pulmonary fibrosis. Eur Respir J 45:1374–1381
58.
go back to reference Raimundo K, Chang E, Broder MS, Alexander K, Zazzali J, Swigris JJ (2016) Clinical and economic burden of idiopathic pulmonary fibrosis: a retrospective cohort study. BMC Pulm Med 16:2 Raimundo K, Chang E, Broder MS, Alexander K, Zazzali J, Swigris JJ (2016) Clinical and economic burden of idiopathic pulmonary fibrosis: a retrospective cohort study. BMC Pulm Med 16:2
Metadata
Title
Deep learning in interstitial lung disease—how long until daily practice
Authors
Ana Adriana Trusculescu
Diana Manolescu
Emanuela Tudorache
Cristian Oancea
Publication date
01-11-2020
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 11/2020
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-020-06986-4

Other articles of this Issue 11/2020

European Radiology 11/2020 Go to the issue