Skip to main content
Top
Published in: European Radiology 11/2020

01-11-2020 | Glioblastoma | Imaging Informatics and Artificial Intelligence

Current status and quality of radiomics studies in lymphoma: a systematic review

Authors: Hongxi Wang, Yi Zhou, Li Li, Wenxiu Hou, Xuelei Ma, Rong Tian

Published in: European Radiology | Issue 11/2020

Login to get access

Abstract

Objectives

To perform a systematic review regarding the developments in the field of radiomics in lymphoma. To evaluate the quality of included articles by the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2), the phases classification criteria for image mining studies, and the radiomics quality scoring (RQS) tool.

Methods

We searched for eligible articles in the MEDLINE/PubMed and EMBASE databases using the terms “radiomics”, “texture” and “lymphoma”. The included studies were divided into two categories: diagnosis-, therapy response- and outcome-related studies. The diagnosis-related studies were evaluated using the QUADAS-2; all studies were evaluated using the phases classification criteria for image mining studies and the RQS tool by two reviewers.

Results

Forty-five studies were included; thirteen papers (28.9%) focused on the differential diagnosis of primary central nervous system lymphoma (PCNSL) and glioblastoma (GBM). Thirty-two (71.1%) studies were classified as discovery science according to the phase classification criteria for image mining studies. The mean RQS score of all studies was 14.2% (ranging from 0.0 to 40.3%), and 23 studies (51.1%) were given a score of < 10%.

Conclusion

The radiomics features could serve as diagnostic and prognostic indicators in lymphoma. However, the current conclusions should be interpreted with caution due to the suboptimal quality of the studies. In order to introduce radiomics into lymphoma clinical settings, the lesion segmentation and selection, the influence of the pathological pattern and the extraction of multiple modalities and multiple time points features need to be further studied.

Key Points

• The radiomics approach may provide useful information for diagnosis, prediction of the therapy response, and outcome of lymphoma.
• The quality of published radiomics studies in lymphoma has been suboptimal to date.
• More studies are needed to examine lesion selection and segmentation, the influence of pathological patterns, and the extraction of multiple modalities and multiple time point features.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446PubMedPubMedCentral Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446PubMedPubMedCentral
2.
go back to reference Patyk M, Silicki J, Mazur R, Kręcichwost R, Sokołowska-Dąbek D, Zaleska-Dorobisz U (2018) Radiomics – the value of the numbers in present and future radiology. Pol J Radiol 83:e171–e174 Patyk M, Silicki J, Mazur R, Kręcichwost R, Sokołowska-Dąbek D, Zaleska-Dorobisz U (2018) Radiomics – the value of the numbers in present and future radiology. Pol J Radiol 83:e171–e174
3.
go back to reference Acharya UR, Hagiwara Y, Sudarshan VK, Chan WY, Ng KH (2018) Towards precision medicine: from quantitative imaging to radiomics. J Zhejiang Univ Sci B 19:6–24 Acharya UR, Hagiwara Y, Sudarshan VK, Chan WY, Ng KH (2018) Towards precision medicine: from quantitative imaging to radiomics. J Zhejiang Univ Sci B 19:6–24
4.
go back to reference Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D (2017) Characterization of PET/CT images using texture analysis: the past, the present… any future? Eur J Nucl Med Mol Imaging 44:151–165 Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D (2017) Characterization of PET/CT images using texture analysis: the past, the present… any future? Eur J Nucl Med Mol Imaging 44:151–165
5.
go back to reference McGranahan N, Swanton C (2017) Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168:613–628PubMed McGranahan N, Swanton C (2017) Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168:613–628PubMed
6.
go back to reference Schwarz RF, Ng CKY, Cooke SL et al (2015) Spatial and temporal heterogeneity in high-grade serous ovarian cancer: a phylogenetic analysis. PLoS Med 12:e1001789PubMedPubMedCentral Schwarz RF, Ng CKY, Cooke SL et al (2015) Spatial and temporal heterogeneity in high-grade serous ovarian cancer: a phylogenetic analysis. PLoS Med 12:e1001789PubMedPubMedCentral
8.
go back to reference Tandel GS, Biswas M, Kakde OG et al (2019) A review on a deep learning perspective in brain cancer classification. Cancers (Basel) 11 Tandel GS, Biswas M, Kakde OG et al (2019) A review on a deep learning perspective in brain cancer classification. Cancers (Basel) 11
9.
go back to reference Wong AJ, Kanwar A, Mohamed AS, CD Fuller (2016) Radiomics in head and neck cancer: from exploration to application. Transl Cancer Res 5:371–382 Wong AJ, Kanwar A, Mohamed AS, CD Fuller (2016) Radiomics in head and neck cancer: from exploration to application. Transl Cancer Res 5:371–382
10.
go back to reference Jeong WK, Jamshidi N, Felker ER, SS Raman, Lu DS (2019) Radiomics and radiogenomics of primary liver cancers. Clin Mol Hepatol 25:21–29 Jeong WK, Jamshidi N, Felker ER, SS Raman, Lu DS (2019) Radiomics and radiogenomics of primary liver cancers. Clin Mol Hepatol 25:21–29
11.
go back to reference Horvat N, Bates DDB, Petkovska I (2019) Novel imaging techniques of rectal cancer: what do radiomics and radiogenomics have to offer? A literature review. Abdom Radiol (NY) 44:3764–3774 Horvat N, Bates DDB, Petkovska I (2019) Novel imaging techniques of rectal cancer: what do radiomics and radiogenomics have to offer? A literature review. Abdom Radiol (NY) 44:3764–3774
12.
go back to reference Swerdlow SH, Campo E, Pileri SA et al (2016) The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 127:2375–2390PubMedPubMedCentral Swerdlow SH, Campo E, Pileri SA et al (2016) The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 127:2375–2390PubMedPubMedCentral
13.
go back to reference Schürch CM, Federmann B, Quintanilla-Martinez L, Fend F (2018) Tumor heterogeneity in lymphomas: a different breed. Pathobiology 85:130–145 Schürch CM, Federmann B, Quintanilla-Martinez L, Fend F (2018) Tumor heterogeneity in lymphomas: a different breed. Pathobiology 85:130–145
14.
go back to reference Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762PubMed Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762PubMed
15.
go back to reference Sollini M, Antunovic L, Chiti A, Kirienko M (2019) Towards clinical application of image mining: a systematic review on artificial intelligence and radiomics. Eur J Nucl Med Mol Imaging 46:2656–2672 Sollini M, Antunovic L, Chiti A, Kirienko M (2019) Towards clinical application of image mining: a systematic review on artificial intelligence and radiomics. Eur J Nucl Med Mol Imaging 46:2656–2672
16.
go back to reference Zorzela L, Loke YK, Ioannidis JP et al (2016) PRISMA harms checklist: improving harms reporting in systematic reviews. BMJ 352:i157 Zorzela L, Loke YK, Ioannidis JP et al (2016) PRISMA harms checklist: improving harms reporting in systematic reviews. BMJ 352:i157
17.
go back to reference Whiting PF, Rutjes AWS, Westwood ME et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536 Whiting PF, Rutjes AWS, Westwood ME et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536
18.
go back to reference Sheskin D (2007) Handbook of parametric and nonparametric statistical procedures, 4th edn. Chapman & Hall/CRC, Web, Boca Raton Sheskin D (2007) Handbook of parametric and nonparametric statistical procedures, 4th edn. Chapman & Hall/CRC, Web, Boca Raton
19.
go back to reference Joseph LF, Bruce L, Myunghee Cho P (2004) Wiley series in probability and statistics. John Wiley & Sons, Web, Hoboken Joseph LF, Bruce L, Myunghee Cho P (2004) Wiley series in probability and statistics. John Wiley & Sons, Web, Hoboken
20.
go back to reference Bathla G, Soni N, Endozo R, Ganeshan B (2019) Magnetic resonance texture analysis utility in differentiating intraparenchymal neurosarcoidosis from primary central nervous system lymphoma: a preliminary analysis. Neuroradiol J 32:203–209 Bathla G, Soni N, Endozo R, Ganeshan B (2019) Magnetic resonance texture analysis utility in differentiating intraparenchymal neurosarcoidosis from primary central nervous system lymphoma: a preliminary analysis. Neuroradiol J 32:203–209
21.
go back to reference Wang B, Liu M, Chen Z (2019) Differential diagnostic value of texture feature analysis of magnetic resonance T2 weighted imaging between glioblastoma and primary central neural system lymphoma. Chin Med Sci J 34:10–17PubMed Wang B, Liu M, Chen Z (2019) Differential diagnostic value of texture feature analysis of magnetic resonance T2 weighted imaging between glioblastoma and primary central neural system lymphoma. Chin Med Sci J 34:10–17PubMed
22.
go back to reference Wu G, Chen Y, Wang Y et al (2018) Sparse representation-based radiomics for the diagnosis of brain tumors. IEEE Trans Med Imaging 37:893–905PubMed Wu G, Chen Y, Wang Y et al (2018) Sparse representation-based radiomics for the diagnosis of brain tumors. IEEE Trans Med Imaging 37:893–905PubMed
23.
go back to reference Yun J, Park JE, Lee H, Ham S, Kim N, Kim HS (2019) Radiomic features and multilayer perceptron network classifier: a robust MRI classification strategy for distinguishing glioblastoma from primary central nervous system lymphoma. Sci Rep 9:5746 Yun J, Park JE, Lee H, Ham S, Kim N, Kim HS (2019) Radiomic features and multilayer perceptron network classifier: a robust MRI classification strategy for distinguishing glioblastoma from primary central nervous system lymphoma. Sci Rep 9:5746
24.
go back to reference Kunimatsu A, Kunimatsu N, Yasaka K et al (2019) Machine learning-based texture analysis of contrast-enhanced mr imaging to differentiate between glioblastoma and primary central nervous system lymphoma. Magn Reson Med Sci 18:44–52PubMed Kunimatsu A, Kunimatsu N, Yasaka K et al (2019) Machine learning-based texture analysis of contrast-enhanced mr imaging to differentiate between glioblastoma and primary central nervous system lymphoma. Magn Reson Med Sci 18:44–52PubMed
25.
go back to reference Kunimatsu A, Kunimatsu N, Kamiya K, Watadani T, Mori H, Abe O (2018) Comparison between glioblastoma and primary central nervous system lymphoma using MR image-based texture analysis. Magn Reson Med Sci 17:50–57 Kunimatsu A, Kunimatsu N, Kamiya K, Watadani T, Mori H, Abe O (2018) Comparison between glioblastoma and primary central nervous system lymphoma using MR image-based texture analysis. Magn Reson Med Sci 17:50–57
26.
go back to reference Kim Y, Cho H h, Kim ST, Park H, Nam D, Kong DS (2018) Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI. Neuroradiology 60:1297–1305 Kim Y, Cho H h, Kim ST, Park H, Nam D, Kong DS (2018) Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI. Neuroradiology 60:1297–1305
27.
go back to reference Suh HB, Choi YS, Bae S et al (2018) Primary central nervous system lymphoma and atypical glioblastoma: differentiation using radiomics approach. Eur Radiol 28:3832–3839PubMed Suh HB, Choi YS, Bae S et al (2018) Primary central nervous system lymphoma and atypical glioblastoma: differentiation using radiomics approach. Eur Radiol 28:3832–3839PubMed
28.
go back to reference Kang D, Park JE, Kim YH et al (2018) Diffusion radiomics as a diagnostic modal for atypical manifestation of primary central nervous system lymphoma: development and multicenter external validation. Neuro Oncol 20:1251–1261 Kang D, Park JE, Kim YH et al (2018) Diffusion radiomics as a diagnostic modal for atypical manifestation of primary central nervous system lymphoma: development and multicenter external validation. Neuro Oncol 20:1251–1261
29.
go back to reference Nakagawa M, Nakaura T, Namimoto T et al (2018) Machine learning based on multi-parametric magnetic resonance imaging to differentiate glioblastoma multiforme from primary cerebral nervous system lymphoma. Eur J Radiol 108:147–154PubMed Nakagawa M, Nakaura T, Namimoto T et al (2018) Machine learning based on multi-parametric magnetic resonance imaging to differentiate glioblastoma multiforme from primary cerebral nervous system lymphoma. Eur J Radiol 108:147–154PubMed
30.
go back to reference Xiao DD, Yan PF, Wang YX, Osman MS, Zhao HY (2018) Glioblastoma and primary central nervous system lymphoma: preoperative differentiation by using MRI-based 3D texture analysis. Clin Neurol Neurosurg 173:84–90 Xiao DD, Yan PF, Wang YX, Osman MS, Zhao HY (2018) Glioblastoma and primary central nervous system lymphoma: preoperative differentiation by using MRI-based 3D texture analysis. Clin Neurol Neurosurg 173:84–90
31.
go back to reference Chen Y, Li Z, Wu G et al (2018) Primary central nervous system lymphoma and glioblastoma differentiation based on conventional magnetic resonance imaging by high-throughput SIFT features. Int J Neurosci 128:608–618PubMed Chen Y, Li Z, Wu G et al (2018) Primary central nervous system lymphoma and glioblastoma differentiation based on conventional magnetic resonance imaging by high-throughput SIFT features. Int J Neurosci 128:608–618PubMed
32.
go back to reference Alcaide-Leon P, Dufort P, Geraldo AF et al (2017) Differentiation of enhancing glioma and primary central nervous system lymphoma by texture-based machine learning. AJNR Am J Neuroradiol 38:1145–1150PubMed Alcaide-Leon P, Dufort P, Geraldo AF et al (2017) Differentiation of enhancing glioma and primary central nervous system lymphoma by texture-based machine learning. AJNR Am J Neuroradiol 38:1145–1150PubMed
33.
go back to reference Guo J, Liu Z, Shen C et al (2018) MR-based radiomics signature in differentiating ocular adnexal lymphoma from idiopathic orbital inflammation. Eur Radiol 28:3872–3881PubMed Guo J, Liu Z, Shen C et al (2018) MR-based radiomics signature in differentiating ocular adnexal lymphoma from idiopathic orbital inflammation. Eur Radiol 28:3872–3881PubMed
34.
go back to reference Fujima N, Homma A, Harada T et al (2019) The utility of MRI histogram and texture analysis for the prediction of histological diagnosis in head and neck malignancies. Cancer Imaging 19:5PubMedPubMedCentral Fujima N, Homma A, Harada T et al (2019) The utility of MRI histogram and texture analysis for the prediction of histological diagnosis in head and neck malignancies. Cancer Imaging 19:5PubMedPubMedCentral
35.
go back to reference Wu X, Sikiö M, Pertovaara H et al (2016) Differentiation of diffuse large B-cell lymphoma from follicular lymphoma using texture analysis on conventional MR images at 3.0 tesla. Acad Radiol 23:696–703PubMed Wu X, Sikiö M, Pertovaara H et al (2016) Differentiation of diffuse large B-cell lymphoma from follicular lymphoma using texture analysis on conventional MR images at 3.0 tesla. Acad Radiol 23:696–703PubMed
36.
go back to reference Ba-Ssalamah A, Muin D, Schernthaner R et al (2013) Texture-based classification of different gastric tumors at contrast-enhanced CT. Eur J Radiol 82:e537–e543PubMed Ba-Ssalamah A, Muin D, Schernthaner R et al (2013) Texture-based classification of different gastric tumors at contrast-enhanced CT. Eur J Radiol 82:e537–e543PubMed
37.
go back to reference Ma Z, Fang M, Huang Y et al (2017) CT-based radiomics signature for differentiating Borrmann type IV gastric cancer from primary gastric lymphoma. Eur J Radiol 91:142–147PubMed Ma Z, Fang M, Huang Y et al (2017) CT-based radiomics signature for differentiating Borrmann type IV gastric cancer from primary gastric lymphoma. Eur J Radiol 91:142–147PubMed
38.
go back to reference Huang Z, Li M, He D et al (2019) Two-dimensional texture analysis based on CT images to differentiate pancreatic lymphoma and pancreatic adenocarcinoma: a preliminary study. Acad Radiol 26:e189–e195PubMed Huang Z, Li M, He D et al (2019) Two-dimensional texture analysis based on CT images to differentiate pancreatic lymphoma and pancreatic adenocarcinoma: a preliminary study. Acad Radiol 26:e189–e195PubMed
39.
go back to reference Reinert CP, Federmann B, Hofmann J et al (2019) Computed tomography textural analysis for the differentiation of chronic lymphocytic leukemia and diffuse large B cell lymphoma of Richter syndrome. Eur Radiol 29:6911–6921PubMed Reinert CP, Federmann B, Hofmann J et al (2019) Computed tomography textural analysis for the differentiation of chronic lymphocytic leukemia and diffuse large B cell lymphoma of Richter syndrome. Eur Radiol 29:6911–6921PubMed
40.
go back to reference Seidler M, Forghani B, Reinhold C et al (2019) Dual-energy CT texture analysis with machine learning for the evaluation and characterization of cervical lymphadenopathy. Comput Struct Biotechnol J 17:1009–1015PubMedPubMedCentral Seidler M, Forghani B, Reinhold C et al (2019) Dual-energy CT texture analysis with machine learning for the evaluation and characterization of cervical lymphadenopathy. Comput Struct Biotechnol J 17:1009–1015PubMedPubMedCentral
41.
go back to reference Reinert CP, Kloth C, Fritz J, Nikolaou K, Horger M (2018) Discriminatory CT-textural features in splenic infiltration of lymphoma versus splenomegaly in liver cirrhosis versus normal spleens in controls and evaluation of their role for longitudinal lymphoma monitoring. Eur J Radiol 104:129–135 Reinert CP, Kloth C, Fritz J, Nikolaou K, Horger M (2018) Discriminatory CT-textural features in splenic infiltration of lymphoma versus splenomegaly in liver cirrhosis versus normal spleens in controls and evaluation of their role for longitudinal lymphoma monitoring. Eur J Radiol 104:129–135
42.
go back to reference Kong Z, Jiang C, Zhu R et al (2019) 18F-FDG-PET-based radiomics features to distinguish primary central nervous system lymphoma from glioblastoma. Neuroimage Clin 23:101912PubMedPubMedCentral Kong Z, Jiang C, Zhu R et al (2019) 18F-FDG-PET-based radiomics features to distinguish primary central nervous system lymphoma from glioblastoma. Neuroimage Clin 23:101912PubMedPubMedCentral
43.
go back to reference Aide N, Talbot M, Fruchart C, Damaj G, Lasnon C (2018) Diagnostic and prognostic value of baseline FDG PET/CT skeletal textural features in diffuse large B cell lymphoma. Eur J Nucl Med Mol Imaging 45:699–711 Aide N, Talbot M, Fruchart C, Damaj G, Lasnon C (2018) Diagnostic and prognostic value of baseline FDG PET/CT skeletal textural features in diffuse large B cell lymphoma. Eur J Nucl Med Mol Imaging 45:699–711
44.
go back to reference Lippi M, Gianotti S, Fama A et al (2019) Texture analysis and multiple-instance learning for the classification of malignant lymphomas. Comput Methods Prog Biomed 185:105153 Lippi M, Gianotti S, Fama A et al (2019) Texture analysis and multiple-instance learning for the classification of malignant lymphomas. Comput Methods Prog Biomed 185:105153
45.
go back to reference Xu H, Guo W, Cui X et al (2019) Three-dimensional texture analysis based on PET/CT images to distinguish hepatocellular carcinoma and hepatic lymphoma. Front Oncol 9:844PubMedPubMedCentral Xu H, Guo W, Cui X et al (2019) Three-dimensional texture analysis based on PET/CT images to distinguish hepatocellular carcinoma and hepatic lymphoma. Front Oncol 9:844PubMedPubMedCentral
47.
go back to reference Ou X, Wang J, Zhou R et al (2019) Ability of 18 F-FDG PET / CT radiomic features to distinguish breast carcinoma from breast lymphoma. Contrast Media Mol Imaging 2019:4507694PubMedPubMedCentral Ou X, Wang J, Zhou R et al (2019) Ability of 18 F-FDG PET / CT radiomic features to distinguish breast carcinoma from breast lymphoma. Contrast Media Mol Imaging 2019:4507694PubMedPubMedCentral
48.
go back to reference Ou X, Zhang J, Wang J et al (2019) Radiomics based on 18F-FDG PET/CT could differentiate breast carcinoma from breast lymphoma using machine-learning approach: a preliminary study. Cancer Med 9:496–506PubMedPubMedCentral Ou X, Zhang J, Wang J et al (2019) Radiomics based on 18F-FDG PET/CT could differentiate breast carcinoma from breast lymphoma using machine-learning approach: a preliminary study. Cancer Med 9:496–506PubMedPubMedCentral
49.
go back to reference Lartizien C, Rogez M, Niaf E, Ricard F (2014) Computer-aided staging of lymphoma patients with FDG PET/CT imaging based on textural information. IEEE J Biomed Health Inform 18:946–955 Lartizien C, Rogez M, Niaf E, Ricard F (2014) Computer-aided staging of lymphoma patients with FDG PET/CT imaging based on textural information. IEEE J Biomed Health Inform 18:946–955
50.
go back to reference Harrison LC, Luukkaala T, Pertovaara H et al (2009) Non-Hodgkin lymphoma response evaluation with MRI texture classification. J Exp Clin Cancer Res 28:87PubMedPubMedCentral Harrison LC, Luukkaala T, Pertovaara H et al (2009) Non-Hodgkin lymphoma response evaluation with MRI texture classification. J Exp Clin Cancer Res 28:87PubMedPubMedCentral
51.
go back to reference Harrison L, Dastidar P, Eskola H et al (2008) Texture analysis on MRI images of non-Hodgkin lymphoma. Comput Biol Med 38:519–524PubMed Harrison L, Dastidar P, Eskola H et al (2008) Texture analysis on MRI images of non-Hodgkin lymphoma. Comput Biol Med 38:519–524PubMed
52.
go back to reference Chen C, Zhuo H, Wei X, Ma X (2019) Contrast-enhanced MRI texture parameters as potential prognostic factors for primary central nervous system lymphoma patients receiving high-dose methotrexate-based chemotherapy. Contrast Media Mol Imaging 2019:5481491 Chen C, Zhuo H, Wei X, Ma X (2019) Contrast-enhanced MRI texture parameters as potential prognostic factors for primary central nervous system lymphoma patients receiving high-dose methotrexate-based chemotherapy. Contrast Media Mol Imaging 2019:5481491
53.
go back to reference Ganeshan B, Miles KA, Babikir S et al (2017) CT-based texture analysis potentially provides prognostic information complementary to interim FDG-pet for patients with Hodgkin’s and aggressive non-Hodgkin’s lymphomas. Eur Radiol 27:1012–1020PubMed Ganeshan B, Miles KA, Babikir S et al (2017) CT-based texture analysis potentially provides prognostic information complementary to interim FDG-pet for patients with Hodgkin’s and aggressive non-Hodgkin’s lymphomas. Eur Radiol 27:1012–1020PubMed
54.
go back to reference Knogler T, El-Rabadi K, Weber M, Karanikas G, Mayerhoefer ME (2014) Three-dimensional texture analysis of contrast enhanced CT images for treatment response assessment in Hodgkin lymphoma: comparison with F-18-FDG PET. Med Phys 41:121904 Knogler T, El-Rabadi K, Weber M, Karanikas G, Mayerhoefer ME (2014) Three-dimensional texture analysis of contrast enhanced CT images for treatment response assessment in Hodgkin lymphoma: comparison with F-18-FDG PET. Med Phys 41:121904
55.
go back to reference Wang M, Xu H, Xiao L, Song W, Zhu S, Ma X (2019) Prognostic value of functional parameters of 18 F-FDG-PET images in patients with primary renal/adrenal lymphoma. Contrast Media Mol Imaging 2019:2641627 Wang M, Xu H, Xiao L, Song W, Zhu S, Ma X (2019) Prognostic value of functional parameters of 18 F-FDG-PET images in patients with primary renal/adrenal lymphoma. Contrast Media Mol Imaging 2019:2641627
56.
go back to reference Mayerhoefer ME, Riedl CC, Kumar A et al (2019) Radiomic features of glucose metabolism enable prediction of outcome in mantle cell lymphoma. Eur J Nucl Med Mol Imaging 46:2760–2769PubMedPubMedCentral Mayerhoefer ME, Riedl CC, Kumar A et al (2019) Radiomic features of glucose metabolism enable prediction of outcome in mantle cell lymphoma. Eur J Nucl Med Mol Imaging 46:2760–2769PubMedPubMedCentral
57.
go back to reference Parvez A, Tau N, Hussey D, Maganti M, Metser U (2018) 18F-FDG PET/CT metabolic tumor parameters and radiomics features in aggressive non-Hodgkin’s lymphoma as predictors of treatment outcome and survival. Ann Nucl Med 32:410–416 Parvez A, Tau N, Hussey D, Maganti M, Metser U (2018) 18F-FDG PET/CT metabolic tumor parameters and radiomics features in aggressive non-Hodgkin’s lymphoma as predictors of treatment outcome and survival. Ann Nucl Med 32:410–416
58.
go back to reference Milgrom SA, Elhalawani H, Lee J et al (2019) A PET radiomics model to predict refractory mediastinal Hodgkin lymphoma. Sci Rep 9:1322PubMedPubMedCentral Milgrom SA, Elhalawani H, Lee J et al (2019) A PET radiomics model to predict refractory mediastinal Hodgkin lymphoma. Sci Rep 9:1322PubMedPubMedCentral
59.
go back to reference Ben Bouallègue F, Tabaa YA, Kafrouni M, Cartron G, Vauchot F, Mariano-Goulart D (2017) Association between textural and morphological tumor indices on baseline PET-CT and early metabolic response on interim PET-CT in bulky malignant lymphomas. Med Phys 44:4608–4619 Ben Bouallègue F, Tabaa YA, Kafrouni M, Cartron G, Vauchot F, Mariano-Goulart D (2017) Association between textural and morphological tumor indices on baseline PET-CT and early metabolic response on interim PET-CT in bulky malignant lymphomas. Med Phys 44:4608–4619
60.
go back to reference Wu J, Lian C, Ruan S et al (2018) Treatment outcome prediction for cancer patients based on radiomics and belief function theory. IEEE Trans Radiat Plasma Med Sci 3:216–224PubMedPubMedCentral Wu J, Lian C, Ruan S et al (2018) Treatment outcome prediction for cancer patients based on radiomics and belief function theory. IEEE Trans Radiat Plasma Med Sci 3:216–224PubMedPubMedCentral
61.
go back to reference Tatsumi M, Isohashi K, Matsunaga K et al (2019) Volumetric and texture analysis on FDG PET in evaluating and predicting treatment response and recurrence after chemotherapy in follicular lymphoma. Int J Clin Oncol 24:1292–1300PubMed Tatsumi M, Isohashi K, Matsunaga K et al (2019) Volumetric and texture analysis on FDG PET in evaluating and predicting treatment response and recurrence after chemotherapy in follicular lymphoma. Int J Clin Oncol 24:1292–1300PubMed
62.
go back to reference Lue KH, Wu YF, Liu SH et al (2019) Prognostic value of pretreatment radiomic features of 18F-FDG PET in patients with Hodgkin lymphoma. Clin Nucl Med 44:e559–e565PubMed Lue KH, Wu YF, Liu SH et al (2019) Prognostic value of pretreatment radiomic features of 18F-FDG PET in patients with Hodgkin lymphoma. Clin Nucl Med 44:e559–e565PubMed
64.
go back to reference Zhou Y, Ma XL, Pu LT, Zhou RF, Ou XJ, Tian R (2019) Prediction of overall survival and progression-free survival by the 18F-FDG PET/CT radiomic features in patients with primary gastric diffuse large B-cell lymphoma. Contrast Media Mol Imaging 2019:5963607 Zhou Y, Ma XL, Pu LT, Zhou RF, Ou XJ, Tian R (2019) Prediction of overall survival and progression-free survival by the 18F-FDG PET/CT radiomic features in patients with primary gastric diffuse large B-cell lymphoma. Contrast Media Mol Imaging 2019:5963607
65.
go back to reference Chalkidou A, O’Doherty MJ, Marsden PK (2015) False discovery rates in PET and CT studies with texture features: a systematic review. PLoS One 10:e0124165PubMedPubMedCentral Chalkidou A, O’Doherty MJ, Marsden PK (2015) False discovery rates in PET and CT studies with texture features: a systematic review. PLoS One 10:e0124165PubMedPubMedCentral
66.
go back to reference Forghani R, Savadjiev P, Chatterjee A, Muthukrishnan N, Reinhold C, Forghani B (2019) Radiomics and artificial intelligence for biomarker and prediction model development in oncology. Comput Struct Biotechnol J 17:995–1008 Forghani R, Savadjiev P, Chatterjee A, Muthukrishnan N, Reinhold C, Forghani B (2019) Radiomics and artificial intelligence for biomarker and prediction model development in oncology. Comput Struct Biotechnol J 17:995–1008
67.
go back to reference Sanduleanu S, Woodruff HC, de Jong EEC et al (2018) Tracking tumor biology with radiomics: a systematic review utilizing a radiomics quality score. Radiother Oncol 127:349–360PubMed Sanduleanu S, Woodruff HC, de Jong EEC et al (2018) Tracking tumor biology with radiomics: a systematic review utilizing a radiomics quality score. Radiother Oncol 127:349–360PubMed
68.
go back to reference Park JE, Kim D, Kim HS et al (2019) Quality of science and reporting of radiomics in oncologic studies: room for improvement according to radiomics quality score and TRIPOD statement. Eur Radiol 30:523–536PubMed Park JE, Kim D, Kim HS et al (2019) Quality of science and reporting of radiomics in oncologic studies: room for improvement according to radiomics quality score and TRIPOD statement. Eur Radiol 30:523–536PubMed
69.
go back to reference Liu Z, Wang S, Dong D et al (2019) The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges. Theranostics 9:1303–1322PubMedPubMedCentral Liu Z, Wang S, Dong D et al (2019) The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges. Theranostics 9:1303–1322PubMedPubMedCentral
70.
go back to reference Kalpathy-Cramer J, Freymann JB, Kirby JS, , Kinahan PE, Prior FW (2014) Quantitative imaging network: data sharing and competitive algorithmvalidation leveraging the cancer imaging archive. Transl Oncol 7:147–152 Kalpathy-Cramer J, Freymann JB, Kirby JS, , Kinahan PE, Prior FW (2014) Quantitative imaging network: data sharing and competitive algorithmvalidation leveraging the cancer imaging archive. Transl Oncol 7:147–152
71.
go back to reference Collins GS, Reitsma JB, Altman DG, Moons KGM, (2015) Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ 350:g7594 Collins GS, Reitsma JB, Altman DG, Moons KGM, (2015) Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ 350:g7594
72.
go back to reference Pavic M, Bogowicz M, Würms X et al (2018) Influence of inter-observer delineation variability on radiomics stability in different tumor sites. Acta Oncol 57:1070–1074PubMed Pavic M, Bogowicz M, Würms X et al (2018) Influence of inter-observer delineation variability on radiomics stability in different tumor sites. Acta Oncol 57:1070–1074PubMed
73.
go back to reference Geets X, Lee JA, Bol A, Lonneux M, Grégoire V (2007) A gradient-based method for segmenting FDG-PET images: methodology and validation. Eur J Nucl Med Mol Imaging 34:1427–1438 Geets X, Lee JA, Bol A, Lonneux M, Grégoire V (2007) A gradient-based method for segmenting FDG-PET images: methodology and validation. Eur J Nucl Med Mol Imaging 34:1427–1438
74.
go back to reference Hatt M, Cheze le Rest C, Descourt P et al (2010) Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications. Int J Radiat Oncol Biol Phys 77:301–308PubMed Hatt M, Cheze le Rest C, Descourt P et al (2010) Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications. Int J Radiat Oncol Biol Phys 77:301–308PubMed
75.
go back to reference Orlhac F, Soussan M, Chouahnia K, Martinod E, Buvat I (2015) 18F-FDG PET-derived textural indices reflect tissue-specific uptake pattern in non-small cell lung cancer. PLoS One 10:e0145063 Orlhac F, Soussan M, Chouahnia K, Martinod E, Buvat I (2015) 18F-FDG PET-derived textural indices reflect tissue-specific uptake pattern in non-small cell lung cancer. PLoS One 10:e0145063
76.
go back to reference Brooks FJ, Grigsby PW (2014) The effect of small tumor volumes on studies of intratumoral heterogeneity of tracer uptake. J Nucl Med 55:37–42PubMed Brooks FJ, Grigsby PW (2014) The effect of small tumor volumes on studies of intratumoral heterogeneity of tracer uptake. J Nucl Med 55:37–42PubMed
77.
go back to reference Hatt M, Majdoub M, Vallieres M et al (2015) 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med 56:38–44PubMed Hatt M, Majdoub M, Vallieres M et al (2015) 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med 56:38–44PubMed
78.
go back to reference Ha S, Choi H, Paeng JC et al (2019) Radiomics in oncological PET/CT: a methodological overview. Nucl Med Mol Imaging 53:14–29PubMedPubMedCentral Ha S, Choi H, Paeng JC et al (2019) Radiomics in oncological PET/CT: a methodological overview. Nucl Med Mol Imaging 53:14–29PubMedPubMedCentral
79.
go back to reference Wang H, Shen G, Jiang C, Li L, Cui F, Tian R (2018) Prognostic value of baseline, interim and end-of-treatment18F-FDG PET/CT parameters in extranodal natural killer/T-cell lymphoma: a meta-analysis. PLoS One 13:e0194435 Wang H, Shen G, Jiang C, Li L, Cui F, Tian R (2018) Prognostic value of baseline, interim and end-of-treatment18F-FDG PET/CT parameters in extranodal natural killer/T-cell lymphoma: a meta-analysis. PLoS One 13:e0194435
Metadata
Title
Current status and quality of radiomics studies in lymphoma: a systematic review
Authors
Hongxi Wang
Yi Zhou
Li Li
Wenxiu Hou
Xuelei Ma
Rong Tian
Publication date
01-11-2020

Other articles of this Issue 11/2020

European Radiology 11/2020 Go to the issue