Skip to main content
Top
Published in: European Radiology 5/2019

01-05-2019 | Neuro

Wavelet-based reconstruction of dynamic susceptibility MR-perfusion: a new method to visualize hypervascular brain tumors

Authors: Thomas Huber, Lukas Rotkopf, Benedikt Wiestler, Wolfgang G. Kunz, Stefanie Bette, Jens Gempt, Christine Preibisch, Jens Ricke, Claus Zimmer, Jan S. Kirschke, Wieland H. Sommer, Kolja M. Thierfelder

Published in: European Radiology | Issue 5/2019

Login to get access

Abstract

Objectives

Parameter maps based on wavelet-transform post-processing of dynamic perfusion data offer an innovative way of visualizing blood vessels in a fully automated, user-independent way. The aims of this study were (i) a proof of concept regarding wavelet-based analysis of dynamic susceptibility contrast (DSC) MRI data and (ii) to demonstrate advantages of wavelet-based measures compared to standard cerebral blood volume (CBV) maps in patients with the initial diagnosis of glioblastoma (GBM).

Methods

Consecutive 3-T DSC MRI datasets of 46 subjects with GBM (mean age 63.0 ± 13.1 years, 28 m) were retrospectively included in this feasibility study. Vessel-specific wavelet magnetic resonance perfusion (wavelet-MRP) maps were calculated using the wavelet transform (Paul wavelet, order 1) of each voxel time course. Five different aspects of image quality and tumor delineation were each qualitatively rated on a 5-point Likert scale. Quantitative analysis included image contrast and contrast-to-noise ratio.

Results

Vessel-specific wavelet-MRP maps could be calculated within a mean time of 2:27 min. Wavelet-MRP achieved higher scores compared to CBV in all qualitative ratings: tumor depiction (4.02 vs. 2.33), contrast enhancement (3.93 vs. 2.23), central necrosis (3.86 vs. 2.40), morphologic correlation (3.87 vs. 2.24), and overall impression (4.00 vs. 2.41); all p < .001. Quantitative image analysis showed a better image contrast and higher contrast-to-noise ratios for wavelet-MRP compared to conventional perfusion maps (all p < .001).

Conclusions

wavelet-MRP is a fast and fully automated post-processing technique that yields reproducible perfusion maps with a clearer vascular depiction of GBM compared to standard CBV maps.

Key Points

Wavelet-MRP offers high-contrast perfusion maps with a clear delineation of focal perfusion alterations.

• Both image contrast and visual image quality were beneficial for wavelet-MRP compared to standard perfusion maps like CBV.

• Wavelet-MRP can be automatically calculated from existing dynamic susceptibility contrast (DSC) perfusion data.

Literature
  1. Guo L, Wang G, Feng Y et al (2016) Diffusion and perfusion weighted magnetic resonance imaging for tumor volume definition in radiotherapy of brain tumors. Radiat Oncol 11:123. https://​doi.​org/​10.​1186/​s13014-016-0702-y View ArticlePubMedPubMed Central
  2. Lee SK (2012) Diffusion tensor and perfusion imaging of brain tumors in high-field MR imaging. Neuroimaging Clin N Am 22:123–134. https://​doi.​org/​10.​1016/​j.​nic.​2012.​02.​001 View ArticlePubMed
  3. Aronen HJ, Gazit IE, Louis DN et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191:41–51. https://​doi.​org/​10.​1148/​radiology.​191.​1.​8134596 View ArticlePubMed
  4. Jain R, Griffith B, Alotaibi F et al (2015) Glioma angiogenesis and perfusion imaging: understanding the relationship between tumor blood volume and leakiness with increasing glioma grade. AJNR Am J Neuroradiol 36:2030–2035. https://​doi.​org/​10.​3174/​ajnr.​A4405 View ArticlePubMedPubMed Central
  5. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820. https://​doi.​org/​10.​1007/​s00401-016-1545-1 View ArticlePubMed
  6. Maeda M, Itoh S, Kimura H et al (1993) Tumor vascularity in the brain: evaluation with dynamic susceptibility-contrast MR imaging. Radiology 189:233–238. https://​doi.​org/​10.​1148/​radiology.​189.​1.​8372199 View ArticlePubMed
  7. Hojjati M, Badve C, Garg V et al (2017) Role of FDG-PET/MRI, FDG-PET/CT, and dynamic susceptibility contrast perfusion MRI in differentiating radiation necrosis from tumor recurrence in glioblastomas. J Neuroimaging. https://​doi.​org/​10.​1111/​jon.​12460
  8. Chuang MT, Liu YS, Tsai YS, Chen YC, Wang CK (2016) Differentiating radiation-induced necrosis from recurrent brain tumor using MR perfusion and spectroscopy: a meta-analysis. PLoS One 11:e0141438. https://​doi.​org/​10.​1371/​journal.​pone.​0141438
  9. Singh R, Kesavabhotla K, Kishore SA et al (2016) Dynamic susceptibility contrast-enhanced MR perfusion imaging in assessing recurrent glioblastoma response to superselective intra-arterial bevacizumab therapy. AJNR Am J Neuroradiol 37:1838–1843. https://​doi.​org/​10.​3174/​ajnr.​A4823 View ArticlePubMedPubMed Central
  10. Ken S, Deviers A, Filleron T et al (2015) Voxel-based evidence of perfusion normalization in glioblastoma patients included in a phase I-II trial of radiotherapy/tipifarnib combination. J Neurooncol 124:465–473. https://​doi.​org/​10.​1007/​s11060-015-1860-8 View ArticlePubMed
  11. Kudo K, Christensen S, Sasaki M et al (2013) Accuracy and reliability assessment of CT and MR perfusion analysis software using a digital phantom. Radiology 267:201–211. https://​doi.​org/​10.​1148/​radiol.​12112618 View ArticlePubMedPubMed Central
  12. Campbell BC, Christensen S, Foster SJ et al (2010) Visual assessment of perfusion-diffusion mismatch is inadequate to select patients for thrombolysis. Cerebrovasc Dis 29:592–596. https://​doi.​org/​10.​1159/​000311080
  13. Havla L, Thierfelder KM, Beyer SE, Sommer WH, Dietrich O (2015) Wavelet-based calculation of cerebral angiographic data from time-resolved CT perfusion acquisitions. Eur Radiol. https://​doi.​org/​10.​1007/​s00330-015-3651-1
  14. Kunz WG, Schuler F, Sommer WH et al (2017) Wavelet-based angiographic reconstruction of computed tomography perfusion data. Invest Radiol 52:302–309. https://​doi.​org/​10.​1097/​RLI.​0000000000000337​ View ArticlePubMed
  15. Liu G, Sobering G, Duyn J, Moonen CT (1993) A functional MRI technique combining principles of echo-shifting with a train of observations (PRESTO). Magn Reson Med 30:764–768. Available: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​8139461. Accessed 24 Jul 2018View ArticlePubMed
  16. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Amer Meteor Soc 79:61–78. https://​doi.​org/​10.​1175/​1520-0477(1998)079<0061:​APGTWA>2.​0.​CO;2
  17. Marstal K, Berendsen FF, Staring M, Klein S (2016) SimpleElastix: a user-friendly, multi-lingual library for medical image registration. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Las Vegas, pp 574–582. https://​doi.​org/​10.​1109/​CVPRW.​2016.​78
  18. Kluge A, Lukas M, Toth V, Pyka T, Zimmer C, Preibisch C (2016) Analysis of three leakage-correction methods for DSC-based measurement of relative cerebral blood volume with respect to heterogeneity in human gliomas. Magn Reson Imaging. https://​doi.​org/​10.​1016/​j.​mri.​2015.​12.​015
  19. Yushkevich PA, Piven J, Hazlett HC et al (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128. https://​doi.​org/​10.​1016/​j.​neuroimage.​2006.​01.​015 View ArticlePubMed
  20. McGraw KO, Wong SP (1996) Forming inferences about some intraclass correlation coefficients. Psychol Methods 30–46. https://​doi.​org/​10.​1037/​1082-989X.​1.​1.​30
  21. Hallgren KA (2012) Computing inter-rater reliability for observational data: an overview and tutorial. Tutor Quant Methods Psychol 8:23–34. https://​doi.​org/​10.​1016/​j.​biotechadv.​2011.​08.​021.​Secreted View ArticlePubMedPubMed Central
  22. Kelm ZS, Korfiatis PD, Lingineni RK et al (2015) Variability and accuracy of different software packages for dynamic susceptibility contrast magnetic resonance imaging for distinguishing glioblastoma progression from pseudoprogression. J Med Imaging (Bellingham) 2:026001. https://​doi.​org/​10.​1117/​1.​JMI.​2.​2.​026001
  23. Hu LS, Kelm Z, Korfiatis P et al (2015) Impact of software modeling on the accuracy of perfusion MRI in glioma. AJNR Am J Neuroradiol 36:2242–2249. https://​doi.​org/​10.​3174/​ajnr.​A4451 View ArticlePubMedPubMed Central
  24. Korfiatis P, Kline TL, Kelm ZS, Carter RE, Hu LS, Erickson BJ (2016) Dynamic susceptibility contrast-MRI quantification software tool: development and evaluation. Tomography 2:448–456. https://​doi.​org/​10.​18383/​j.​tom.​2016.​00172 View ArticlePubMedPubMed Central
  25. Maia AC Jr, Malheiros SM, da Rocha AJ et al (2004) Stereotactic biopsy guidance in adults with supratentorial nonenhancing gliomas: role of perfusion-weighted magnetic resonance imaging. J Neurosurg 101:970–976. https://​doi.​org/​10.​3171/​jns.​2004.​101.​6.​0970
  26. Hardee ME, Zagzag D (2012) Mechanisms of glioma-associated neovascularization. Am J Pathol 181:1126–1141. https://​doi.​org/​10.​1016/​j.​ajpath.​2012.​06.​030 View ArticlePubMedPubMed Central
Metadata
Title
Wavelet-based reconstruction of dynamic susceptibility MR-perfusion: a new method to visualize hypervascular brain tumors
Authors
Thomas Huber
Lukas Rotkopf
Benedikt Wiestler
Wolfgang G. Kunz
Stefanie Bette
Jens Gempt
Christine Preibisch
Jens Ricke
Claus Zimmer
Jan S. Kirschke
Wieland H. Sommer
Kolja M. Thierfelder
Publication date
01-05-2019
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 5/2019
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-018-5892-2

Other articles of this Issue 5/2019

European Radiology 5/2019 Go to the issue