Skip to main content
Top
Published in: European Radiology 5/2019

Open Access 01-05-2019 | Magnetic Resonance

Magnetic resonance imaging of the time course of hyperpolarized 129Xe gas exchange in the human lungs and heart

Authors: Ozkan Doganay, Mitchell Chen, Tahreema Matin, Marzia Rigolli, Julie-Ann Phillips, Anthony McIntyre, Fergus V. Gleeson

Published in: European Radiology | Issue 5/2019

Login to get access

Abstract

Purpose

To perform magnetic resonance imaging (MRI), human lung imaging, and quantification of the gas-transfer dynamics of hyperpolarized xenon-129 (HPX) from the alveoli into the blood plasma.

Materials and methods

HPX MRI with iterative decomposition of water and fat with echo asymmetry and least-square estimation (IDEAL) approach were used with multi-interleaved spiral k-space sampling to obtain HPX gas and dissolved phase images. IDEAL time-series images were then obtained from ten subjects including six normal subjects and four patients with pulmonary emphysema to test the feasibility of the proposed technique for capturing xenon-129 gas-transfer dynamics (XGTD). The dynamics of xenon gas diffusion over the entire lung was also investigated by measuring the signal intensity variations between three regions of interest, including the left and right lungs and the heart using Welch’s t test.

Results

The technique enabled the acquisition of HPX gas and dissolved phase compartment images in a single breath-hold interval of 8 s. The y-intersect of the XGTD curves were also found to be statistically lower in the patients with lung emphysema than in the healthy group (p < 0.05).

Conclusion

This time-series IDEAL technique enables the visualization and quantification of inhaled xenon from the alveoli to the left ventricle with a clinical gradient strength magnet during a single breath-hold, in healthy and diseased lungs.

Key Points

The proposed hyperpolarized xenon-129 gas and dissolved magnetic resonance imaging technique can provide regional and temporal measurements of xenon-129 gas-transfer dynamics.
• Quantitative measurement of xenon-129 gas-transfer dynamics from the alveolar to the heart was demonstrated in normal subjects and pulmonary emphysema.
• Comparison of gas-transfer dynamics in normal subjects and pulmonary emphysema showed that the proposed technique appears sensitive to changes affecting the alveoli, pulmonary interstitium, and capillaries.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kirby M, Svenningsen S, Owrangi A et al (2012) Hyperpolarized He-3 and Xe-129 MR imaging in healthy volunteers and patients with chronic obstructive pulmonary disease. Radiology 265:600–610CrossRefPubMed Kirby M, Svenningsen S, Owrangi A et al (2012) Hyperpolarized He-3 and Xe-129 MR imaging in healthy volunteers and patients with chronic obstructive pulmonary disease. Radiology 265:600–610CrossRefPubMed
2.
go back to reference Driehuys B, Martinez-Jimenez S, Cleveland ZI et al (2012) Chronic obstructive pulmonary disease: safety and tolerability of hyperpolarized 129Xe MR imaging in healthy volunteers and patients. Radiology 262:279–289CrossRefPubMedPubMedCentral Driehuys B, Martinez-Jimenez S, Cleveland ZI et al (2012) Chronic obstructive pulmonary disease: safety and tolerability of hyperpolarized 129Xe MR imaging in healthy volunteers and patients. Radiology 262:279–289CrossRefPubMedPubMedCentral
3.
go back to reference Shukla Y, Wheatley A, Kirby M et al (2012) Hyperpolarized 129Xe magnetic resonance imaging: tolerability in healthy volunteers and subjects with pulmonary disease. Acad Radiol 19:941–951CrossRefPubMed Shukla Y, Wheatley A, Kirby M et al (2012) Hyperpolarized 129Xe magnetic resonance imaging: tolerability in healthy volunteers and subjects with pulmonary disease. Acad Radiol 19:941–951CrossRefPubMed
4.
go back to reference Svenningsen S, Guo F, Kirby M et al (2014) Pulmonary functional magnetic resonance imaging: asthma temporal-spatial maps. Acad Radiol 21:1402–1410CrossRefPubMed Svenningsen S, Guo F, Kirby M et al (2014) Pulmonary functional magnetic resonance imaging: asthma temporal-spatial maps. Acad Radiol 21:1402–1410CrossRefPubMed
5.
go back to reference He M, Driehuys B, Que LG, Huang YT (2016) Using hyperpolarized 129Xe MRI to quantify the pulmonary ventilation distribution. Acad Radiol 23:1521–1531CrossRefPubMedPubMedCentral He M, Driehuys B, Que LG, Huang YT (2016) Using hyperpolarized 129Xe MRI to quantify the pulmonary ventilation distribution. Acad Radiol 23:1521–1531CrossRefPubMedPubMedCentral
6.
go back to reference Matin TN, Rahman N, Nickol AH et al (2017) Chronic obstructive pulmonary disease: lobar analysis with hyperpolarized 129Xe MR imaging. Radiology 282:857–868CrossRefPubMed Matin TN, Rahman N, Nickol AH et al (2017) Chronic obstructive pulmonary disease: lobar analysis with hyperpolarized 129Xe MR imaging. Radiology 282:857–868CrossRefPubMed
7.
go back to reference Ebner L, Kammerman J, Driehuys B, Schiebler ML, Cadman RV, Fain SB (2017) The role of hyperpolarized 129xenon in MR imaging of pulmonary function. Eur J Radiol 86:343–352CrossRefPubMed Ebner L, Kammerman J, Driehuys B, Schiebler ML, Cadman RV, Fain SB (2017) The role of hyperpolarized 129xenon in MR imaging of pulmonary function. Eur J Radiol 86:343–352CrossRefPubMed
8.
go back to reference Doganay O, Matin TN, Mcintyre A et al (2018) Fast dynamic ventilation MRI of hyperpolarized (129) Xe using spiral imaging. Magn Reson Med 79:2597–2606 Doganay O, Matin TN, Mcintyre A et al (2018) Fast dynamic ventilation MRI of hyperpolarized (129) Xe using spiral imaging. Magn Reson Med 79:2597–2606
9.
go back to reference Mugler JP 3rd, Driehuys B, Brookeman JR et al (1997) MR imaging and spectroscopy using hyperpolarized 129Xe gas: preliminary human results. Magn Reson Med 37:809–815CrossRefPubMed Mugler JP 3rd, Driehuys B, Brookeman JR et al (1997) MR imaging and spectroscopy using hyperpolarized 129Xe gas: preliminary human results. Magn Reson Med 37:809–815CrossRefPubMed
10.
go back to reference Stewart NJ, Leung G, Norquay G et al (2014) Experimental validation of the hyperpolarized (129) Xe chemical shift saturation recovery technique in healthy volunteers and subjects with interstitial lung disease. Magn Reson Med. https://doi.org/10.1002/mrm.25400 Stewart NJ, Leung G, Norquay G et al (2014) Experimental validation of the hyperpolarized (129) Xe chemical shift saturation recovery technique in healthy volunteers and subjects with interstitial lung disease. Magn Reson Med. https://​doi.​org/​10.​1002/​mrm.​25400
11.
go back to reference Fox MS, Ouriadov A, Thind K et al (2014) Detection of radiation induced lung injury in rats using dynamic hyperpolarized (129)Xe magnetic resonance spectroscopy. Med Phys 41 Fox MS, Ouriadov A, Thind K et al (2014) Detection of radiation induced lung injury in rats using dynamic hyperpolarized (129)Xe magnetic resonance spectroscopy. Med Phys 41
13.
go back to reference Månsson S, Wolber J, Driehuys B, Wollmer P, Golman K (2003) Characterization of diffusing capacity and perfusion of the rat lung in a lipopolysaccaride disease model using hyperpolarized 129Xe. Magn Reson Med 50:1170–1179 Månsson S, Wolber J, Driehuys B, Wollmer P, Golman K (2003) Characterization of diffusing capacity and perfusion of the rat lung in a lipopolysaccaride disease model using hyperpolarized 129Xe. Magn Reson Med 50:1170–1179
14.
go back to reference Patz S, Muradyan I, Hrovat MI et al (2011) Diffusion of hyperpolarized 129Xe in the lung: a simplified model of 129Xe septal uptake and experimental results. New J Phys 13 Patz S, Muradyan I, Hrovat MI et al (2011) Diffusion of hyperpolarized 129Xe in the lung: a simplified model of 129Xe septal uptake and experimental results. New J Phys 13
15.
go back to reference Chang YV (2013) MOXE: a model of gas exchange for hyperpolarized 129Xe magnetic resonance of the lung. Magn Reson Med 69:884–890CrossRefPubMed Chang YV (2013) MOXE: a model of gas exchange for hyperpolarized 129Xe magnetic resonance of the lung. Magn Reson Med 69:884–890CrossRefPubMed
16.
go back to reference Chang YV, Quirk JD, Ruset IC, Atkinson JJ, Hersman FW, Woods JC (2014) Quantification of human lung structure and physiology using hyperpolarized 129Xe. Magn Reson Med 71:339–344CrossRefPubMed Chang YV, Quirk JD, Ruset IC, Atkinson JJ, Hersman FW, Woods JC (2014) Quantification of human lung structure and physiology using hyperpolarized 129Xe. Magn Reson Med 71:339–344CrossRefPubMed
17.
go back to reference Stewart NJ, Parra-Robles J, Wild JM (2016) Finite element modeling of (129)Xe diffusive gas exchange NMR in the human alveoli. J Magn Reson 271:21–33CrossRefPubMed Stewart NJ, Parra-Robles J, Wild JM (2016) Finite element modeling of (129)Xe diffusive gas exchange NMR in the human alveoli. J Magn Reson 271:21–33CrossRefPubMed
18.
go back to reference Wang JM, Robertson SH, Wang Z et al (2018) Using hyperpolarized (129)Xe MRI to quantify regional gas transfer in idiopathic pulmonary fibrosis. Thorax 73:21–28CrossRefPubMed Wang JM, Robertson SH, Wang Z et al (2018) Using hyperpolarized (129)Xe MRI to quantify regional gas transfer in idiopathic pulmonary fibrosis. Thorax 73:21–28CrossRefPubMed
19.
go back to reference Kaushik SS, Freeman MS, Cleveland ZI et al (2013) Probing the regional distribution of pulmonary gas exchange through single-breath gas- and dissolved-phase 129Xe MR imaging. J Appl Physiol (1985) 115:850–860CrossRef Kaushik SS, Freeman MS, Cleveland ZI et al (2013) Probing the regional distribution of pulmonary gas exchange through single-breath gas- and dissolved-phase 129Xe MR imaging. J Appl Physiol (1985) 115:850–860CrossRef
21.
go back to reference Driehuys B, Cofer GP, Pollaro J, Mackel JB, Hedlund LW, Johnson GA (2006) Imaging alveolar-capillary gas transfer using hyperpolarized 129Xe MRI. Proc Natl Acad Sci U S A 103:18278–18283CrossRefPubMedPubMedCentral Driehuys B, Cofer GP, Pollaro J, Mackel JB, Hedlund LW, Johnson GA (2006) Imaging alveolar-capillary gas transfer using hyperpolarized 129Xe MRI. Proc Natl Acad Sci U S A 103:18278–18283CrossRefPubMedPubMedCentral
22.
go back to reference Qing K, Mugler JP 3rd, Altes TA et al (2014) Assessment of lung function in asthma and COPD using hyperpolarized 129Xe chemical shift saturation recovery spectroscopy and dissolved-phase MRI. NMR Biomed 27:1490–1501 Qing K, Mugler JP 3rd, Altes TA et al (2014) Assessment of lung function in asthma and COPD using hyperpolarized 129Xe chemical shift saturation recovery spectroscopy and dissolved-phase MRI. NMR Biomed 27:1490–1501
23.
go back to reference Qing K, Ruppert K, Jiang Y et al (2014) Regional mapping of gas uptake by blood and tissue in the human lung using hyperpolarized xenon-129 MRI. J Magn Reson Imaging 39:346–359CrossRefPubMed Qing K, Ruppert K, Jiang Y et al (2014) Regional mapping of gas uptake by blood and tissue in the human lung using hyperpolarized xenon-129 MRI. J Magn Reson Imaging 39:346–359CrossRefPubMed
24.
go back to reference Ruppert K, Mata JF, Brookeman JR, Hagspiel KD, Mugler JP 3rd (2004) Exploring lung function with hyperpolarized (129)Xe nuclear magnetic resonance. Magn Reson Med 51:676–687CrossRefPubMed Ruppert K, Mata JF, Brookeman JR, Hagspiel KD, Mugler JP 3rd (2004) Exploring lung function with hyperpolarized (129)Xe nuclear magnetic resonance. Magn Reson Med 51:676–687CrossRefPubMed
25.
go back to reference Ruppert K, Brookeman JR, Hagspiel KD, Driehuys B, Mugler JP 3rd (2000) NMR of hyperpolarized (129)Xe in the canine chest: spectral dynamics during a breath-hold. NMR Biomed 13:220–228CrossRefPubMed Ruppert K, Brookeman JR, Hagspiel KD, Driehuys B, Mugler JP 3rd (2000) NMR of hyperpolarized (129)Xe in the canine chest: spectral dynamics during a breath-hold. NMR Biomed 13:220–228CrossRefPubMed
26.
go back to reference Muradyan I, Butler JP, Dabaghyan M et al (2013) Single-breath xenon polarization transfer contrast (SB-XTC): implementation and initial results in healthy humans. J Magn Reson Imaging 37:457–470CrossRefPubMed Muradyan I, Butler JP, Dabaghyan M et al (2013) Single-breath xenon polarization transfer contrast (SB-XTC): implementation and initial results in healthy humans. J Magn Reson Imaging 37:457–470CrossRefPubMed
27.
go back to reference Patz S, Muradian I, Hrovat MI et al (2008) Human pulmonary imaging and spectroscopy with hyperpolarized 129Xe at 0.2T. Acad Radiol 15:713–727 Patz S, Muradian I, Hrovat MI et al (2008) Human pulmonary imaging and spectroscopy with hyperpolarized 129Xe at 0.2T. Acad Radiol 15:713–727
28.
go back to reference Reeder SB, Pineda AR, Wen Z et al (2005) Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging. Magn Reson Med 54:636–644CrossRef Reeder SB, Pineda AR, Wen Z et al (2005) Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging. Magn Reson Med 54:636–644CrossRef
29.
go back to reference Schulte RF, Sperl JI, Weidl E et al (2013) Saturation-recovery metabolic-exchange rate imaging with hyperpolarized [1-13C] pyruvate using spectral-spatial excitation. Magn Reson Med 69:1209–1216CrossRefPubMed Schulte RF, Sperl JI, Weidl E et al (2013) Saturation-recovery metabolic-exchange rate imaging with hyperpolarized [1-13C] pyruvate using spectral-spatial excitation. Magn Reson Med 69:1209–1216CrossRefPubMed
30.
go back to reference Doganay O, Wade T, Hegarty E, McKenzie C, Schulte RF, Santyr GE (2016) Hyperpolarized (129) Xe imaging of the rat lung using spiral IDEAL. Magn Reson Med 76:566–576CrossRefPubMed Doganay O, Wade T, Hegarty E, McKenzie C, Schulte RF, Santyr GE (2016) Hyperpolarized (129) Xe imaging of the rat lung using spiral IDEAL. Magn Reson Med 76:566–576CrossRefPubMed
31.
go back to reference Doganay O, Stirrat E, McKenzie C, Schulte RF, Santyr GE (2016) Quantification of regional early stage gas exchange changes using hyperpolarized (129)Xe MRI in a rat model of radiation-induced lung injury. Med Phys 43:2410CrossRefPubMed Doganay O, Stirrat E, McKenzie C, Schulte RF, Santyr GE (2016) Quantification of regional early stage gas exchange changes using hyperpolarized (129)Xe MRI in a rat model of radiation-induced lung injury. Med Phys 43:2410CrossRefPubMed
32.
go back to reference Zanette B, Stirrat E, Jelveh S, Hope A, Santyr G (2017) Physiological gas exchange mapping of hyperpolarized (129) Xe using spiral-IDEAL and MOXE in a model of regional radiation-induced lung injury. Med Phys. https://doi.org/10.1002/mp.12730 Zanette B, Stirrat E, Jelveh S, Hope A, Santyr G (2017) Physiological gas exchange mapping of hyperpolarized (129) Xe using spiral-IDEAL and MOXE in a model of regional radiation-induced lung injury. Med Phys. https://​doi.​org/​10.​1002/​mp.​12730
33.
go back to reference Wiesinger F, Weidl E, Menzel MI et al (2012) IDEAL spiral CSI for dynamic metabolic MR imaging of hyperpolarized [1-13C]pyruvate. Magn Reson Med 68:8–16CrossRefPubMed Wiesinger F, Weidl E, Menzel MI et al (2012) IDEAL spiral CSI for dynamic metabolic MR imaging of hyperpolarized [1-13C]pyruvate. Magn Reson Med 68:8–16CrossRefPubMed
34.
go back to reference Dregely I, Ruset IC, Mata JF et al (2012) Multiple-exchange-time xenon polarization transfer contrast (MXTC) MRI: initial results in animals and healthy volunteers. Magn Reson Med 67:943–953CrossRefPubMed Dregely I, Ruset IC, Mata JF et al (2012) Multiple-exchange-time xenon polarization transfer contrast (MXTC) MRI: initial results in animals and healthy volunteers. Magn Reson Med 67:943–953CrossRefPubMed
35.
go back to reference Dregely I, Mugler JP 3rd, Ruset IC et al (2011) Hyperpolarized Xenon-129 gas-exchange imaging of lung microstructure: first case studies in subjects with obstructive lung disease. J Magn Reson Imaging 33:1052–1062CrossRefPubMedPubMedCentral Dregely I, Mugler JP 3rd, Ruset IC et al (2011) Hyperpolarized Xenon-129 gas-exchange imaging of lung microstructure: first case studies in subjects with obstructive lung disease. J Magn Reson Imaging 33:1052–1062CrossRefPubMedPubMedCentral
36.
go back to reference Ruppert K, Brookeman JR, Hagspiel KD, Mugler JP 3rd (2000) Probing lung physiology with xenon polarization transfer contrast (XTC). Magn Reson Med 44:349–357CrossRefPubMed Ruppert K, Brookeman JR, Hagspiel KD, Mugler JP 3rd (2000) Probing lung physiology with xenon polarization transfer contrast (XTC). Magn Reson Med 44:349–357CrossRefPubMed
37.
go back to reference Kaushik SS, Freeman MS, Yoon SW et al (2014) Measuring diffusion limitation with a perfusion-limited gas--hyperpolarized 129Xe gas-transfer spectroscopy in patients with idiopathic pulmonary fibrosis. J Appl Physiol (1985) 117:577–585CrossRef Kaushik SS, Freeman MS, Yoon SW et al (2014) Measuring diffusion limitation with a perfusion-limited gas--hyperpolarized 129Xe gas-transfer spectroscopy in patients with idiopathic pulmonary fibrosis. J Appl Physiol (1985) 117:577–585CrossRef
38.
go back to reference Santyr G, Fox M, Thind K et al (2014) Anatomical, functional and metabolic imaging of radiation-induced lung injury using hyperpolarized MRI. NMR Biomed 27:1515–1524CrossRefPubMed Santyr G, Fox M, Thind K et al (2014) Anatomical, functional and metabolic imaging of radiation-induced lung injury using hyperpolarized MRI. NMR Biomed 27:1515–1524CrossRefPubMed
39.
go back to reference Zanette B, Stirrat E, Jelveh S, Hope A, Santyr G (2017) Detection of regional radiation-induced lung injury using hyperpolarized 129 Xe chemical shift imaging in a rat model involving partial lung irradiation: proof-of-concept demonstration. Adv Radiat Oncol 2:475–484CrossRefPubMedPubMedCentral Zanette B, Stirrat E, Jelveh S, Hope A, Santyr G (2017) Detection of regional radiation-induced lung injury using hyperpolarized 129 Xe chemical shift imaging in a rat model involving partial lung irradiation: proof-of-concept demonstration. Adv Radiat Oncol 2:475–484CrossRefPubMedPubMedCentral
40.
go back to reference Ouriadov A, Fox M, Hegarty E, Parraga G, Wong E, Santyr EG (2016) Early stage radiation-induced lung injury detected using hyperpolarized (129) Xe morphometry: proof-of-concept demonstration in a rat model. Magn Reson Med Sci 75:2421–2431 Ouriadov A, Fox M, Hegarty E, Parraga G, Wong E, Santyr EG (2016) Early stage radiation-induced lung injury detected using hyperpolarized (129) Xe morphometry: proof-of-concept demonstration in a rat model. Magn Reson Med Sci 75:2421–2431
41.
go back to reference Li H, Zhang Z, Zhao X, Sun X, Ye C, Zhou X (2016) Quantitative evaluation of radiation-induced lung injury with hyperpolarized xenon magnetic resonance. Magn Reson Med 76:408–416CrossRefPubMed Li H, Zhang Z, Zhao X, Sun X, Ye C, Zhou X (2016) Quantitative evaluation of radiation-induced lung injury with hyperpolarized xenon magnetic resonance. Magn Reson Med 76:408–416CrossRefPubMed
42.
go back to reference Doganay O, Fox M, Santyr GE (2014) Measurement of pulmonary perfusion and gas exchange using hyperpolarized 129Xe in a rodent model of radiation-induced lung Injury. Proceedings of the 22th annual meeting of ISMRM (abstract ID 2290), Milan, Italy Doganay O, Fox M, Santyr GE (2014) Measurement of pulmonary perfusion and gas exchange using hyperpolarized 129Xe in a rodent model of radiation-induced lung Injury. Proceedings of the 22th annual meeting of ISMRM (abstract ID 2290), Milan, Italy
43.
go back to reference Leung G, Norquay G, Schulte RF, Wild JM (2015) Radiofrequency pulse design for the selective excitation of dissolved 129Xe. Magn Reson Med 73:21–30CrossRefPubMed Leung G, Norquay G, Schulte RF, Wild JM (2015) Radiofrequency pulse design for the selective excitation of dissolved 129Xe. Magn Reson Med 73:21–30CrossRefPubMed
Metadata
Title
Magnetic resonance imaging of the time course of hyperpolarized 129Xe gas exchange in the human lungs and heart
Authors
Ozkan Doganay
Mitchell Chen
Tahreema Matin
Marzia Rigolli
Julie-Ann Phillips
Anthony McIntyre
Fergus V. Gleeson
Publication date
01-05-2019
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 5/2019
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-018-5853-9

Other articles of this Issue 5/2019

European Radiology 5/2019 Go to the issue