Skip to main content
Top
Published in: European Radiology 5/2019

01-05-2019 | Cardiac

Coronary CT angiography–derived plaque quantification with artificial intelligence CT fractional flow reserve for the identification of lesion-specific ischemia

Authors: Philipp L. von Knebel Doeberitz, Carlo N. De Cecco, U. Joseph Schoepf, Taylor M. Duguay, Moritz H. Albrecht, Marly van Assen, Maximilian J. Bauer, Rock H. Savage, J. Trent Pannell, Domenico De Santis, Addison A. Johnson, Akos Varga-Szemes, Richard R. Bayer, Stefan O. Schönberg, John W. Nance, Christian Tesche

Published in: European Radiology | Issue 5/2019

Login to get access

Abstract

Objectives

We sought to investigate the diagnostic performance of coronary CT angiography (cCTA)–derived plaque markers combined with deep machine learning–based fractional flow reserve (CT-FFR) to identify lesion-specific ischemia using invasive FFR as the reference standard.

Methods

Eighty-four patients (61 ± 10 years, 65% male) who had undergone cCTA followed by invasive FFR were included in this single-center retrospective, IRB-approved, HIPAA-compliant study. Various plaque markers were derived from cCTA using a semi-automatic software prototype and deep machine learning–based CT-FFR. The discriminatory value of plaque markers and CT-FFR to identify lesion-specific ischemia on a per-vessel basis was evaluated using invasive FFR as the reference standard.

Results

One hundred three lesion-containing vessels were investigated. 32/103 lesions were hemodynamically significant by invasive FFR. In a multivariate analysis (adjusted for Framingham risk score), the following markers showed predictive value for lesion-specific ischemia (odds ratio [OR]): lesion length (OR 1.15, p = 0.037), non-calcified plaque volume (OR 1.02, p = 0.007), napkin-ring sign (OR 5.97, p = 0.014), and CT-FFR (OR 0.81, p < 0.0001). A receiver operating characteristics analysis showed the benefit of identifying plaque markers over cCTA stenosis grading alone, with AUCs increasing from 0.61 with ≥ 50% stenosis to 0.83 with addition of plaque markers to detect lesion-specific ischemia. Further incremental benefit was realized with the addition of CT-FFR (AUC 0.93).

Conclusion

Coronary CTA–derived plaque markers portend predictive value to identify lesion-specific ischemia when compared to cCTA stenosis grading alone. The addition of CT-FFR to plaque markers shows incremental discriminatory power.

Key Points

• Coronary CT angiography (cCTA)–derived quantitative plaque markers of atherosclerosis portend high discriminatory power to identify lesion-specific ischemia.
• Coronary CT angiography–derived fractional flow reserve (CT-FFR) shows superior diagnostic performance over cCTA alone in detecting lesion-specific ischemia.
• A combination of plaque markers with CT-FFR provides incremental discriminatory value for detecting flow-limiting stenosis.
Literature
1.
go back to reference Smith SC Jr, Feldman TE, Hirshfeld JW Jr et al (2006) ACC/AHA/SCAI 2005 guideline update for percutaneous coronary intervention: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/SCAI writing committee to update 2001 guidelines for percutaneous coronary intervention). Circulation 113:e166–e286PubMed Smith SC Jr, Feldman TE, Hirshfeld JW Jr et al (2006) ACC/AHA/SCAI 2005 guideline update for percutaneous coronary intervention: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/SCAI writing committee to update 2001 guidelines for percutaneous coronary intervention). Circulation 113:e166–e286PubMed
2.
go back to reference Curzen N, Rana O, Nicholas Z et al (2014) Does routine pressure wire assessment influence management strategy at coronary angiography for diagnosis of chest pain?: the RIPCORD study. Circ Cardiovasc Interv 7:248–255CrossRefPubMed Curzen N, Rana O, Nicholas Z et al (2014) Does routine pressure wire assessment influence management strategy at coronary angiography for diagnosis of chest pain?: the RIPCORD study. Circ Cardiovasc Interv 7:248–255CrossRefPubMed
3.
go back to reference Tonino PA, De Bruyne B, Pijls NH et al (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360:213–224CrossRef Tonino PA, De Bruyne B, Pijls NH et al (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360:213–224CrossRef
4.
go back to reference Min JK, Feignoux J, Treutenaere J, Laperche T, Sablayrolles J (2010) The prognostic value of multidetector coronary CT angiography for the prediction of major adverse cardiovascular events: a multicenter observational cohort study. Int J Cardiovasc Imaging 26:721–728CrossRefPubMed Min JK, Feignoux J, Treutenaere J, Laperche T, Sablayrolles J (2010) The prognostic value of multidetector coronary CT angiography for the prediction of major adverse cardiovascular events: a multicenter observational cohort study. Int J Cardiovasc Imaging 26:721–728CrossRefPubMed
5.
go back to reference Dey D, Achenbach S, Schuhbaeck A et al (2014) Comparison of quantitative atherosclerotic plaque burden from coronary CT angiography in patients with first acute coronary syndrome and stable coronary artery disease. J Cardiovasc Comput Tomogr 8:368–374CrossRefPubMed Dey D, Achenbach S, Schuhbaeck A et al (2014) Comparison of quantitative atherosclerotic plaque burden from coronary CT angiography in patients with first acute coronary syndrome and stable coronary artery disease. J Cardiovasc Comput Tomogr 8:368–374CrossRefPubMed
6.
go back to reference Gaur S, Øvrehus KA, Dey D et al (2016) Coronary plaque quantification and fractional flow reserve by coronary computed tomography angiography identify ischaemia-causing lesions. Eur Heart J 37:1220–1227 Gaur S, Øvrehus KA, Dey D et al (2016) Coronary plaque quantification and fractional flow reserve by coronary computed tomography angiography identify ischaemia-causing lesions. Eur Heart J 37:1220–1227
7.
go back to reference Bauer RW, Thilo C, Chiaramida SA, Vogl TJ, Costello P, Schoepf UJ (2009) Noncalcified atherosclerotic plaque burden at coronary CT angiography: a better predictor of ischemia at stress myocardial perfusion imaging than calcium score and stenosis severity. AJR Am J Roentgenol 193:410–418CrossRefPubMed Bauer RW, Thilo C, Chiaramida SA, Vogl TJ, Costello P, Schoepf UJ (2009) Noncalcified atherosclerotic plaque burden at coronary CT angiography: a better predictor of ischemia at stress myocardial perfusion imaging than calcium score and stenosis severity. AJR Am J Roentgenol 193:410–418CrossRefPubMed
8.
go back to reference Dwivedi G, Liu Y, Tewari S, Inacio J, Pelletier-Galarneau M, Chow BJ (2016) Incremental prognostic value of quantified vulnerable plaque by cardiac computed tomography: a pilot study. J Thorac Imaging 31:373–379CrossRefPubMed Dwivedi G, Liu Y, Tewari S, Inacio J, Pelletier-Galarneau M, Chow BJ (2016) Incremental prognostic value of quantified vulnerable plaque by cardiac computed tomography: a pilot study. J Thorac Imaging 31:373–379CrossRefPubMed
9.
go back to reference Tesche C, De Cecco CN, Albrecht MH et al (2017) Coronary CT angiography-derived fractional flow reserve. Radiology 285:17–33CrossRefPubMed Tesche C, De Cecco CN, Albrecht MH et al (2017) Coronary CT angiography-derived fractional flow reserve. Radiology 285:17–33CrossRefPubMed
11.
go back to reference Benton SM Jr, Tesche C, De Cecco CN, Duguay TM, Schoepf UJ, Bayer RR 2nd (2018) Noninvasive derivation of fractional flow reserve from coronary computed tomographic angiography: a review. J Thorac Imaging 33:88–96PubMed Benton SM Jr, Tesche C, De Cecco CN, Duguay TM, Schoepf UJ, Bayer RR 2nd (2018) Noninvasive derivation of fractional flow reserve from coronary computed tomographic angiography: a review. J Thorac Imaging 33:88–96PubMed
12.
go back to reference D'Agostino RB Sr, Vasan RS, Pencina MJ et al (2008) General cardiovascular risk profile for use in primary care: the Framingham heart study. Circulation 117:743–753CrossRef D'Agostino RB Sr, Vasan RS, Pencina MJ et al (2008) General cardiovascular risk profile for use in primary care: the Framingham heart study. Circulation 117:743–753CrossRef
13.
go back to reference Task Force Member, Montalescot G, Sechtem U et al (2013) 2013 ESC guidelines on the management of stable coronary artery disease: the task force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 34:2949–3003CrossRef Task Force Member, Montalescot G, Sechtem U et al (2013) 2013 ESC guidelines on the management of stable coronary artery disease: the task force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 34:2949–3003CrossRef
14.
go back to reference Cury RC, Abbara S, Achenbach S et al (2016) CAD-RADSTM coronary artery disease - reporting and data system. An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Radiology (ACR) and the north American Society for Cardiovascular Imaging (NASCI). Endorsed by the American College of Cardiology. J Cardiovasc Comput Tomogr 10:269–281CrossRefPubMed Cury RC, Abbara S, Achenbach S et al (2016) CAD-RADSTM coronary artery disease - reporting and data system. An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Radiology (ACR) and the north American Society for Cardiovascular Imaging (NASCI). Endorsed by the American College of Cardiology. J Cardiovasc Comput Tomogr 10:269–281CrossRefPubMed
15.
go back to reference Achenbach S, Ropers D, Hoffmann U et al (2004) Assessment of coronary remodeling in stenotic and nonstenotic coronary atherosclerotic lesions by multidetector spiral computed tomography. J Am Coll Cardiol 43:842–847CrossRefPubMed Achenbach S, Ropers D, Hoffmann U et al (2004) Assessment of coronary remodeling in stenotic and nonstenotic coronary atherosclerotic lesions by multidetector spiral computed tomography. J Am Coll Cardiol 43:842–847CrossRefPubMed
16.
go back to reference Maurovich-Horvat P, Schlett CL, Alkadhi H et al (2012) The napkin-ring sign indicates advanced atherosclerotic lesions in coronary CT angiography. JACC Cardiovasc Imaging 5:1243–1252CrossRefPubMed Maurovich-Horvat P, Schlett CL, Alkadhi H et al (2012) The napkin-ring sign indicates advanced atherosclerotic lesions in coronary CT angiography. JACC Cardiovasc Imaging 5:1243–1252CrossRefPubMed
17.
go back to reference Park HB, Heo R, ó Hartaigh B et al (2015) Atherosclerotic plaque characteristics by CT angiography identify coronary lesions that cause ischemia: a direct comparison to fractional flow reserve. JACC Cardiovasc Imaging 8:1–10 Park HB, Heo R, ó Hartaigh B et al (2015) Atherosclerotic plaque characteristics by CT angiography identify coronary lesions that cause ischemia: a direct comparison to fractional flow reserve. JACC Cardiovasc Imaging 8:1–10
18.
go back to reference Tesche C, Caruso D, De Cecco CN et al (2017) Coronary computed tomography angiography-derived plaque quantification in patients with acute coronary syndrome. Am J Cardiol 119:712–718CrossRefPubMed Tesche C, Caruso D, De Cecco CN et al (2017) Coronary computed tomography angiography-derived plaque quantification in patients with acute coronary syndrome. Am J Cardiol 119:712–718CrossRefPubMed
19.
go back to reference Tesche C, De Cecco CN, Caruso D et al (2016) Coronary CT angiography derived morphological and functional quantitative plaque markers correlated with invasive fractional flow reserve for detecting hemodynamically significant stenosis. J Cardiovasc Comput Tomogr 10:199–206CrossRefPubMed Tesche C, De Cecco CN, Caruso D et al (2016) Coronary CT angiography derived morphological and functional quantitative plaque markers correlated with invasive fractional flow reserve for detecting hemodynamically significant stenosis. J Cardiovasc Comput Tomogr 10:199–206CrossRefPubMed
20.
go back to reference Voros S, Rinehart S, Qian Z et al (2011) Coronary atherosclerosis imaging by coronary CT angiography: current status, correlation with intravascular interrogation and meta-analysis. JACC Cardiovasc Imaging 4:537–548CrossRefPubMed Voros S, Rinehart S, Qian Z et al (2011) Coronary atherosclerosis imaging by coronary CT angiography: current status, correlation with intravascular interrogation and meta-analysis. JACC Cardiovasc Imaging 4:537–548CrossRefPubMed
21.
go back to reference Itu L, Rapaka S, Passerini T et al (2016) A machine-learning approach for computation of fractional flow reserve from coronary computed tomography. J Appl Physiol (1985) 121:42–52CrossRef Itu L, Rapaka S, Passerini T et al (2016) A machine-learning approach for computation of fractional flow reserve from coronary computed tomography. J Appl Physiol (1985) 121:42–52CrossRef
22.
go back to reference Coenen A, Lubbers MM, Kurata A et al (2015) Fractional flow reserve computed from noninvasive CT angiography data: diagnostic performance of an on-site clinician-operated computational fluid dynamics algorithm. Radiology 274:674–683CrossRefPubMed Coenen A, Lubbers MM, Kurata A et al (2015) Fractional flow reserve computed from noninvasive CT angiography data: diagnostic performance of an on-site clinician-operated computational fluid dynamics algorithm. Radiology 274:674–683CrossRefPubMed
23.
go back to reference Scanlon PJ, Faxon DP, Audet AM et al (1999) ACC/AHA guidelines for coronary angiography: executive summary and recommendations. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (committee on coronary angiography) developed in collaboration with the Society for Cardiac Angiography and Interventions. Circulation 99:2345–2357CrossRefPubMed Scanlon PJ, Faxon DP, Audet AM et al (1999) ACC/AHA guidelines for coronary angiography: executive summary and recommendations. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (committee on coronary angiography) developed in collaboration with the Society for Cardiac Angiography and Interventions. Circulation 99:2345–2357CrossRefPubMed
24.
go back to reference DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845CrossRef DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845CrossRef
25.
go back to reference Hell MM, Dey D, Marwan M, Achenbach S, Schmid J, Schuhbaeck A (2015) Non-invasive prediction of hemodynamically significant coronary artery stenoses by contrast density difference in coronary CT angiography. Eur J Radiol 84:1502–1508CrossRefPubMed Hell MM, Dey D, Marwan M, Achenbach S, Schmid J, Schuhbaeck A (2015) Non-invasive prediction of hemodynamically significant coronary artery stenoses by contrast density difference in coronary CT angiography. Eur J Radiol 84:1502–1508CrossRefPubMed
26.
go back to reference Diaz-Zamudio M, Dey D, Schuhbaeck A et al (2015) Automated quantitative plaque burden from coronary CT angiography noninvasively predicts hemodynamic significance by using fractional flow reserve in intermediate coronary lesions. Radiology 276:408–415CrossRefPubMedPubMedCentral Diaz-Zamudio M, Dey D, Schuhbaeck A et al (2015) Automated quantitative plaque burden from coronary CT angiography noninvasively predicts hemodynamic significance by using fractional flow reserve in intermediate coronary lesions. Radiology 276:408–415CrossRefPubMedPubMedCentral
27.
go back to reference Iguchi T, Hasegawa T, Nishimura S et al (2013) Impact of lesion length on functional significance in intermediate coronary lesions. Clin Cardiol 36:172–177CrossRefPubMed Iguchi T, Hasegawa T, Nishimura S et al (2013) Impact of lesion length on functional significance in intermediate coronary lesions. Clin Cardiol 36:172–177CrossRefPubMed
28.
go back to reference Dey D, Gaur S, Øvrehus KA et al (2018) Integrated prediction of lesion-specific ischaemia from quantitative coronary CT angiography using machine learning: a multicentre study. Eur Radiol 28:2655–2664 Dey D, Gaur S, Øvrehus KA et al (2018) Integrated prediction of lesion-specific ischaemia from quantitative coronary CT angiography using machine learning: a multicentre study. Eur Radiol 28:2655–2664
29.
go back to reference Benz DC, Mikulicic F, Gräni C et al (2017) Diagnostic accuracy of coronary opacification derived from coronary computed tomography angiography to detect ischemia: first validation versus single-photon emission computed tomography. EJNMMI Res 7:92 Benz DC, Mikulicic F, Gräni C et al (2017) Diagnostic accuracy of coronary opacification derived from coronary computed tomography angiography to detect ischemia: first validation versus single-photon emission computed tomography. EJNMMI Res 7:92
30.
go back to reference Motoyama S, Kondo T, Sarai M et al (2007) Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol 50:319–326CrossRefPubMed Motoyama S, Kondo T, Sarai M et al (2007) Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol 50:319–326CrossRefPubMed
31.
go back to reference Pflederer T, Marwan M, Schepis T et al (2010) Characterization of culprit lesions in acute coronary syndromes using coronary dual-source CT angiography. Atherosclerosis 211:437–444CrossRefPubMed Pflederer T, Marwan M, Schepis T et al (2010) Characterization of culprit lesions in acute coronary syndromes using coronary dual-source CT angiography. Atherosclerosis 211:437–444CrossRefPubMed
32.
go back to reference Kolossvary M, Szilveszter B, Merkely B, Maurovich-Horvat P (2017) Plaque imaging with CT-a comprehensive review on coronary CT angiography based risk assessment. Cardiovasc Diagn Ther 7:489–506CrossRefPubMedPubMedCentral Kolossvary M, Szilveszter B, Merkely B, Maurovich-Horvat P (2017) Plaque imaging with CT-a comprehensive review on coronary CT angiography based risk assessment. Cardiovasc Diagn Ther 7:489–506CrossRefPubMedPubMedCentral
33.
go back to reference Nadjiri J, Hausleiter J, Jähnichen C et al (2016) Incremental prognostic value of quantitative plaque assessment in coronary CT angiography during 5 years of follow up. J Cardiovasc Comput Tomogr 10:97–104 Nadjiri J, Hausleiter J, Jähnichen C et al (2016) Incremental prognostic value of quantitative plaque assessment in coronary CT angiography during 5 years of follow up. J Cardiovasc Comput Tomogr 10:97–104
34.
go back to reference Koo BK, Erglis A, Doh JH et al (2011) Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (diagnosis of ischemia-causing stenoses obtained via noninvasive fractional flow reserve) study. J Am Coll Cardiol 58:1989–1997CrossRefPubMed Koo BK, Erglis A, Doh JH et al (2011) Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (diagnosis of ischemia-causing stenoses obtained via noninvasive fractional flow reserve) study. J Am Coll Cardiol 58:1989–1997CrossRefPubMed
35.
go back to reference Nakazato R, Park HB, Berman DS et al (2013) Noninvasive fractional flow reserve derived from computed tomography angiography for coronary lesions of intermediate stenosis severity: results from the DeFACTO study. Circ Cardiovasc Imaging 6:881–889CrossRefPubMed Nakazato R, Park HB, Berman DS et al (2013) Noninvasive fractional flow reserve derived from computed tomography angiography for coronary lesions of intermediate stenosis severity: results from the DeFACTO study. Circ Cardiovasc Imaging 6:881–889CrossRefPubMed
36.
go back to reference Nørgaard BL, Leipsic J, Gaur S et al (2014) Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (analysis of coronary blood flow using CT angiography: next steps). J Am Coll Cardiol 63:1145–1155 Nørgaard BL, Leipsic J, Gaur S et al (2014) Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (analysis of coronary blood flow using CT angiography: next steps). J Am Coll Cardiol 63:1145–1155
37.
go back to reference Kunce JT, Cook DW, Miller DE (1975) Random variables and correlational overkill. Educ Psychol Meas 35:529–534CrossRef Kunce JT, Cook DW, Miller DE (1975) Random variables and correlational overkill. Educ Psychol Meas 35:529–534CrossRef
38.
go back to reference Tesche C, De Cecco CN, Vliegenthart R et al (2016) Coronary CT angiography-derived quantitative markers for predicting in-stent restenosis. J Cardiovasc Comput Tomogr 10:377–383CrossRefPubMed Tesche C, De Cecco CN, Vliegenthart R et al (2016) Coronary CT angiography-derived quantitative markers for predicting in-stent restenosis. J Cardiovasc Comput Tomogr 10:377–383CrossRefPubMed
Metadata
Title
Coronary CT angiography–derived plaque quantification with artificial intelligence CT fractional flow reserve for the identification of lesion-specific ischemia
Authors
Philipp L. von Knebel Doeberitz
Carlo N. De Cecco
U. Joseph Schoepf
Taylor M. Duguay
Moritz H. Albrecht
Marly van Assen
Maximilian J. Bauer
Rock H. Savage
J. Trent Pannell
Domenico De Santis
Addison A. Johnson
Akos Varga-Szemes
Richard R. Bayer
Stefan O. Schönberg
John W. Nance
Christian Tesche
Publication date
01-05-2019
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 5/2019
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-018-5834-z

Other articles of this Issue 5/2019

European Radiology 5/2019 Go to the issue