Skip to main content
Top
Published in: European Radiology 8/2019

01-08-2019 | Computer Applications

CT reconstruction algorithms affect histogram and texture analysis: evidence for liver parenchyma, focal solid liver lesions, and renal cysts

Authors: Su Joa Ahn, Jung Hoon Kim, Sang Min Lee, Sang Joon Park, Joon Koo Han

Published in: European Radiology | Issue 8/2019

Login to get access

Abstract

Purpose

To determine the effects of different reconstruction algorithms on histogram and texture features in different targets.

Materials and methods

Among 3620 patients, 480 had normal liver parenchyma, 494 had focal solid liver lesions (metastases = 259; hepatocellular carcinoma = 99; hemangioma = 78; abscess = 32; and cholangiocarcinoma = 26), and 488 had renal cysts. CT images were reconstructed with filtered back-projection (FBP), hybrid iterative reconstruction (HIR), and iterative model reconstruction (IMR) algorithms. Computerized histogram and texture analyses were performed by extracting 11 features.

Results

Different reconstruction algorithms had distinct, significant effects. IMR had a greater effect than HIR. For instance, IMR had a significant effect on five features of liver parenchyma, nine features of focal liver lesions, and four features of renal cysts on portal-phase scans and four, eight, and four features, respectively, on precontrast scans (p < 0.05). Meanwhile, different algorithms had a greater effect on focal liver lesions (six in HIR and nine in IMR on portal-phase, three in HIR, and eight in IMR on precontrast scans) than on liver parenchyma or cysts. The mean attenuation and standard deviation were not affected by the reconstruction algorithm (p > .05). Most parameters showed good or excellent intra- and interobserver agreement, with intraclass correlation coefficients ranging from 0.634 to 0.972.

Conclusions

Different reconstruction algorithms affect histogram and texture features. Reconstruction algorithms showed stronger effects in focal liver lesions than in liver parenchyma or renal cysts.

Key Points

Imaging heterogeneities influenced the quantification of image features.
Different reconstruction algorithms had a significant effect on histogram and texture features.
Solid liver lesions were more affected than liver parenchyma or cysts.
Appendix
Available only for authorised users
Literature
1.
go back to reference Castellano G, Bonilha L, Li LM, Cendes F (2004) Texture analysis of medical images. Clin Radiol 59:1061–1069CrossRefPubMed Castellano G, Bonilha L, Li LM, Cendes F (2004) Texture analysis of medical images. Clin Radiol 59:1061–1069CrossRefPubMed
2.
go back to reference Gevaert O, Xu J, Hoang CD et al (2012) Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data--methods and preliminary results. Radiology 264:387–396CrossRefPubMedPubMedCentral Gevaert O, Xu J, Hoang CD et al (2012) Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data--methods and preliminary results. Radiology 264:387–396CrossRefPubMedPubMedCentral
3.
go back to reference Choi CM, Kim MY, Lee JC, Kim HJ (2014) Advanced lung adenocarcinoma harboring a mutation of the epidermal growth factor receptor: CT findings after tyrosine kinase inhibitor therapy. Radiology 270:574–582CrossRefPubMed Choi CM, Kim MY, Lee JC, Kim HJ (2014) Advanced lung adenocarcinoma harboring a mutation of the epidermal growth factor receptor: CT findings after tyrosine kinase inhibitor therapy. Radiology 270:574–582CrossRefPubMed
4.
go back to reference Davnall F, Yip CS, Ljungqvist G et al (2012) Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging 3:573–589CrossRefPubMedPubMedCentral Davnall F, Yip CS, Ljungqvist G et al (2012) Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging 3:573–589CrossRefPubMedPubMedCentral
6.
go back to reference Scheffel H, Stolzmann P, Schlett CL et al (2012) Coronary artery plaques: cardiac CT with model-based and adaptive-statistical iterative reconstruction technique. Eur J Radiol 81:e363–e369CrossRefPubMed Scheffel H, Stolzmann P, Schlett CL et al (2012) Coronary artery plaques: cardiac CT with model-based and adaptive-statistical iterative reconstruction technique. Eur J Radiol 81:e363–e369CrossRefPubMed
7.
go back to reference Singh S, Kalra MK, Do S et al (2012) Comparison of hybrid and pure iterative reconstruction techniques with conventional filtered back projection: dose reduction potential in the abdomen. J Comput Assist Tomogr 36:347–353CrossRefPubMed Singh S, Kalra MK, Do S et al (2012) Comparison of hybrid and pure iterative reconstruction techniques with conventional filtered back projection: dose reduction potential in the abdomen. J Comput Assist Tomogr 36:347–353CrossRefPubMed
8.
go back to reference Berrington de González A, Mahesh M, Kim KP et al (2009) Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med 169:2071–2077CrossRefPubMed Berrington de González A, Mahesh M, Kim KP et al (2009) Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med 169:2071–2077CrossRefPubMed
9.
go back to reference Hu MQ, Li M, Liu ZY, Huang MP, Liu H, Liang CH (2016) Image quality evaluation of iterative model reconstruction on low tube voltage (80 kVp) coronary CT angiography in an animal study. Acta Radiol 57:170–177CrossRefPubMed Hu MQ, Li M, Liu ZY, Huang MP, Liu H, Liang CH (2016) Image quality evaluation of iterative model reconstruction on low tube voltage (80 kVp) coronary CT angiography in an animal study. Acta Radiol 57:170–177CrossRefPubMed
10.
go back to reference Nakaura T, Iyama Y, Kidoh M et al (2016) Comparison of iterative model, hybrid iterative, and filtered back projection reconstruction techniques in low-dose brain CT: impact of thin-slice imaging. Neuroradiology 58:245–251CrossRefPubMed Nakaura T, Iyama Y, Kidoh M et al (2016) Comparison of iterative model, hybrid iterative, and filtered back projection reconstruction techniques in low-dose brain CT: impact of thin-slice imaging. Neuroradiology 58:245–251CrossRefPubMed
11.
go back to reference Schulz B, Beeres M, Bodelle B et al (2013) Performance of iterative image reconstruction in CT of the paranasal sinuses: a phantom study. AJNR Am J Neuroradiol 34:1072–1076CrossRefPubMedPubMedCentral Schulz B, Beeres M, Bodelle B et al (2013) Performance of iterative image reconstruction in CT of the paranasal sinuses: a phantom study. AJNR Am J Neuroradiol 34:1072–1076CrossRefPubMedPubMedCentral
12.
go back to reference Barrett HH, Myers KJ, Hoeschen C, Kupinski MA, Little MP (2015) Task-based measures of image quality and their relation to radiation dose and patient risk. Phys Med Biol 60:R1–R75CrossRefPubMedPubMedCentral Barrett HH, Myers KJ, Hoeschen C, Kupinski MA, Little MP (2015) Task-based measures of image quality and their relation to radiation dose and patient risk. Phys Med Biol 60:R1–R75CrossRefPubMedPubMedCentral
13.
go back to reference Solomon J, Mileto A, Nelson RC, Roy Choudhury K, Samei E (2016) Quantitative features of liver lesions, lung nodules, and renal stones at multi-detector row CT examinations: dependency on radiation dose and reconstruction algorithm. Radiology 279:185–194CrossRefPubMed Solomon J, Mileto A, Nelson RC, Roy Choudhury K, Samei E (2016) Quantitative features of liver lesions, lung nodules, and renal stones at multi-detector row CT examinations: dependency on radiation dose and reconstruction algorithm. Radiology 279:185–194CrossRefPubMed
14.
go back to reference Mortelé KJ, Ros PR (2001) Cystic focal liver lesions in the adult: differential CT and MR imaging features. Radiohgraphics 21:895–910CrossRef Mortelé KJ, Ros PR (2001) Cystic focal liver lesions in the adult: differential CT and MR imaging features. Radiohgraphics 21:895–910CrossRef
15.
go back to reference Chalian H, Tochetto SM, Töre HG, Rezai P, Yaghmai V (2012) Hepatic tumors: region-of-interest versus volumetric analysis for quantification of attenuation at CT. Radiology 262:853–861CrossRefPubMed Chalian H, Tochetto SM, Töre HG, Rezai P, Yaghmai V (2012) Hepatic tumors: region-of-interest versus volumetric analysis for quantification of attenuation at CT. Radiology 262:853–861CrossRefPubMed
16.
go back to reference Ahn SJ, Kim JH, Park SJ, Han JK (2016) Prediction of the therapeutic response after FOLFOX and FOLFIRI treatment for patients with liver metastasis from colorectal cancer using computerized CT texture analysis. Eur J Radiol 85:1867–1874CrossRefPubMed Ahn SJ, Kim JH, Park SJ, Han JK (2016) Prediction of the therapeutic response after FOLFOX and FOLFIRI treatment for patients with liver metastasis from colorectal cancer using computerized CT texture analysis. Eur J Radiol 85:1867–1874CrossRefPubMed
17.
go back to reference Chee CG, Kim YH, Lee KH et al (2017) CT texture analysis in patients with locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy: a potential imaging biomarker for treatment response and prognosis. PLoS One 12:e0182883CrossRefPubMedPubMedCentral Chee CG, Kim YH, Lee KH et al (2017) CT texture analysis in patients with locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy: a potential imaging biomarker for treatment response and prognosis. PLoS One 12:e0182883CrossRefPubMedPubMedCentral
18.
go back to reference Haider MA, Vosough A, Khalvati F, Kiss A, Ganeshan B, Bjarnason GA (2017) CT texture analysis: a potential tool for prediction of survival in patients with metastatic clear cell carcinoma treated with sunitinib. Cancer Imaging 17:4CrossRefPubMedPubMedCentral Haider MA, Vosough A, Khalvati F, Kiss A, Ganeshan B, Bjarnason GA (2017) CT texture analysis: a potential tool for prediction of survival in patients with metastatic clear cell carcinoma treated with sunitinib. Cancer Imaging 17:4CrossRefPubMedPubMedCentral
19.
go back to reference Löve A, Olsson ML, Siemund R, Stålhammar F, Bjorkman-Burtscher IM, Söderberg M (2013) Six iterative reconstruction algorithms in brain CT: a phantom study on image quality at different radiation dose levels. Br J Radiol 86:20130388CrossRefPubMedPubMedCentral Löve A, Olsson ML, Siemund R, Stålhammar F, Bjorkman-Burtscher IM, Söderberg M (2013) Six iterative reconstruction algorithms in brain CT: a phantom study on image quality at different radiation dose levels. Br J Radiol 86:20130388CrossRefPubMedPubMedCentral
20.
go back to reference Marin D, Choudhury KR, Gupta RT et al (2013) Clinical impact of an adaptive statistical iterative reconstruction algorithm for detection of hypervascular liver tumours using a low tube voltage, high tube current MDCT technique. Eur Radiol 23:3325–3335CrossRefPubMed Marin D, Choudhury KR, Gupta RT et al (2013) Clinical impact of an adaptive statistical iterative reconstruction algorithm for detection of hypervascular liver tumours using a low tube voltage, high tube current MDCT technique. Eur Radiol 23:3325–3335CrossRefPubMed
22.
go back to reference Oda S, Utsunomiya D, Funama Y et al (2014) A knowledge-based iterative model reconstruction algorithm: can super-low-dose cardiac CT be applicable in clinical settings? Acad Radiol 21:104–110CrossRefPubMed Oda S, Utsunomiya D, Funama Y et al (2014) A knowledge-based iterative model reconstruction algorithm: can super-low-dose cardiac CT be applicable in clinical settings? Acad Radiol 21:104–110CrossRefPubMed
23.
go back to reference Suchá D, Willemink MJ, de Jong PA et al (2014) The impact of a new model-based iterative reconstruction algorithm on prosthetic heart valve related artifacts at reduced radiation dose MDCT. Int J Cardiovasc Imaging 30:785–793CrossRefPubMed Suchá D, Willemink MJ, de Jong PA et al (2014) The impact of a new model-based iterative reconstruction algorithm on prosthetic heart valve related artifacts at reduced radiation dose MDCT. Int J Cardiovasc Imaging 30:785–793CrossRefPubMed
24.
go back to reference Miles KA, Ganeshan B, Griffiths MR, Young RC, Chatwin CR (2009) Colorectal cancer: texture analysis of portal phase hepatic CT images as a potential marker of survival. Radiology 250:444–452CrossRefPubMed Miles KA, Ganeshan B, Griffiths MR, Young RC, Chatwin CR (2009) Colorectal cancer: texture analysis of portal phase hepatic CT images as a potential marker of survival. Radiology 250:444–452CrossRefPubMed
25.
go back to reference Ng F, Kozarski R, Ganeshan B, Goh V (2013) Assessment of tumor heterogeneity by CT texture analysis: can the largest cross-sectional area be used as an alternative to whole tumor analysis? Eur J Radiol 82:342–348CrossRefPubMed Ng F, Kozarski R, Ganeshan B, Goh V (2013) Assessment of tumor heterogeneity by CT texture analysis: can the largest cross-sectional area be used as an alternative to whole tumor analysis? Eur J Radiol 82:342–348CrossRefPubMed
26.
go back to reference Ozkan E, West A, Dedelow JA et al (2015) CT gray-level texture analysis as a quantitative imaging biomarker of epidermal growth factor receptor mutation status in adenocarcinoma of the lung. AJR Am J Roentgenol 205:1016–1025CrossRefPubMed Ozkan E, West A, Dedelow JA et al (2015) CT gray-level texture analysis as a quantitative imaging biomarker of epidermal growth factor receptor mutation status in adenocarcinoma of the lung. AJR Am J Roentgenol 205:1016–1025CrossRefPubMed
27.
go back to reference Solomon J, Samei E (2014) A generic framework to simulate realistic lung, liver and renal pathologies in CT imaging. Phys Med Biol 59:6637–6657CrossRefPubMed Solomon J, Samei E (2014) A generic framework to simulate realistic lung, liver and renal pathologies in CT imaging. Phys Med Biol 59:6637–6657CrossRefPubMed
Metadata
Title
CT reconstruction algorithms affect histogram and texture analysis: evidence for liver parenchyma, focal solid liver lesions, and renal cysts
Authors
Su Joa Ahn
Jung Hoon Kim
Sang Min Lee
Sang Joon Park
Joon Koo Han
Publication date
01-08-2019
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 8/2019
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-018-5829-9

Other articles of this Issue 8/2019

European Radiology 8/2019 Go to the issue