Skip to main content
Top
Published in: European Radiology 6/2019

01-06-2019 | Cardiac

Fractional flow reserve derived from CCTA may have a prognostic role in myocardial bridging

Authors: Fan Zhou, Chun Xiang Tang, U. Joseph Schoepf, Christian Tesche, Maximilian J. Bauer, Brian E. Jacobs, Chang Sheng Zhou, Jing Yan, Meng Jie Lu, Guang Ming Lu, Long Jiang Zhang

Published in: European Radiology | Issue 6/2019

Login to get access

Abstract

Purpose

To evaluate the feasibility of fractional flow reserve (cFFR) derivation from coronary CT angiography (CCTA) in patients with myocardial bridging (MB), its relationship with MB anatomical features, and clinical relevance.

Methods

This retrospective study included 120 patients with MB of the left anterior descending artery (LAD) and 41 controls. MB location, length, depth, muscle index, instance, and stenosis rate were measured. cFFR values were compared between superficial MB (≤ 2 mm), deep MB (> 2 mm), and control groups. Factors associated with abnormal cFFR values (≤ 0.80) were analyzed.

Results

MB patients demonstrated lower cFFR values in MB and distal segments than controls (all p < 0.05). A significant cFFR difference was only found in the MB segment during systole between superficial (0.94, 0.90–0.96) and deep MB (0.91, 0.83–0.95) (p = 0.018). Abnormal cFFR values were found in 69 (57.5%) MB patients (29 [49.2%] superficial vs. 40 [65.6%] deep; p = 0.069). MB length (OR = 1.06, 95% CI 1.03–1.10; p = 0.001) and systolic stenosis (OR = 1.04, 95% CI 1.01–1.07; p = 0.021) were the main predictors for abnormal cFFR, with an area under the curve of 0.774 (95% CI 0.689–0.858; p < 0.001). MB patients with abnormal cFFR reported more typical angina (18.8% vs 3.9%, p = 0.023) than patients with normal values.

Conclusion

MB patients showed lower cFFR values than controls. Abnormal cFFR values have a positive association with symptoms of typical angina. MB length and systolic stenosis demonstrate moderate predictive value for an abnormal cFFR value.

Key Points

• MB patients showed lower cFFR values than controls.
• Abnormal cFFR values have a positive association with typical angina symptoms.
• MB length and systolic stenosis demonstrate moderate predictive value for an abnormal cFFR value .
Literature
1.
go back to reference Forsdahl SH, Rogers IS, Schnittger I et al (2017) Myocardial bridges on coronary computed tomography angiography—correlation with intravascular ultrasound and fractional flow reserve. Circ J 81:1894–1900CrossRefPubMed Forsdahl SH, Rogers IS, Schnittger I et al (2017) Myocardial bridges on coronary computed tomography angiography—correlation with intravascular ultrasound and fractional flow reserve. Circ J 81:1894–1900CrossRefPubMed
2.
go back to reference Nakanishi R, Rajani R, Ishikawa Y, Ishii T, Berman DS (2012) Myocardial bridging on coronary CTA: an innocent bystander or a culprit in myocardial infarction? J Cardiovasc Comput Tomogr 6:3–13CrossRefPubMed Nakanishi R, Rajani R, Ishikawa Y, Ishii T, Berman DS (2012) Myocardial bridging on coronary CTA: an innocent bystander or a culprit in myocardial infarction? J Cardiovasc Comput Tomogr 6:3–13CrossRefPubMed
3.
go back to reference Dimitriu-Leen AC, van Rosendael AR, Smit JM et al (2017) Long-term prognosis of patients with intramural course of coronary arteries assessed with CT angiography. JACC Cardiovasc Imaging 10:1451–1458CrossRefPubMed Dimitriu-Leen AC, van Rosendael AR, Smit JM et al (2017) Long-term prognosis of patients with intramural course of coronary arteries assessed with CT angiography. JACC Cardiovasc Imaging 10:1451–1458CrossRefPubMed
4.
go back to reference Rihal C, Ammash N (2017) Intramural course of coronary arteries: a bridge too far no more. JACC Cardiovasc Imaging 10:1459–1460CrossRefPubMed Rihal C, Ammash N (2017) Intramural course of coronary arteries: a bridge too far no more. JACC Cardiovasc Imaging 10:1459–1460CrossRefPubMed
5.
go back to reference Rubinshtein R, Gaspar T, Lewis BS, Prasad A, Peled N, Halon DA (2013) Long-term prognosis and outcome in patients with a chest pain syndrome and myocardial bridging: a 64-slice coronary computed tomography angiography study. Eur Heart J Cardiovasc Imaging 14:579–585CrossRefPubMed Rubinshtein R, Gaspar T, Lewis BS, Prasad A, Peled N, Halon DA (2013) Long-term prognosis and outcome in patients with a chest pain syndrome and myocardial bridging: a 64-slice coronary computed tomography angiography study. Eur Heart J Cardiovasc Imaging 14:579–585CrossRefPubMed
6.
go back to reference Li Y, Yu M, Zhang J, Li M, Lu Z, Wei M (2017) Non-invasive imaging of myocardial bridge by coronary computed tomography angiography: the value of transluminal attenuation gradient to predict significant dynamic compression. Eur Radiol 27:1971–1979CrossRefPubMed Li Y, Yu M, Zhang J, Li M, Lu Z, Wei M (2017) Non-invasive imaging of myocardial bridge by coronary computed tomography angiography: the value of transluminal attenuation gradient to predict significant dynamic compression. Eur Radiol 27:1971–1979CrossRefPubMed
7.
go back to reference Corban MT, Hung OY, Eshtehardi P et al (2014) Myocardial bridging: contemporary understanding of pathophysiology with implications for diagnostic and therapeutic strategies. J Am Coll Cardiol 63:2346–2355CrossRefPubMedPubMedCentral Corban MT, Hung OY, Eshtehardi P et al (2014) Myocardial bridging: contemporary understanding of pathophysiology with implications for diagnostic and therapeutic strategies. J Am Coll Cardiol 63:2346–2355CrossRefPubMedPubMedCentral
8.
go back to reference Tarantini G, Migliore F, Cademartiri F, Fraccaro C, Iliceto S (2016) Left anterior descending artery myocardial bridging: a clinical approach. J Am Coll Cardiol 68:2887–2899CrossRefPubMed Tarantini G, Migliore F, Cademartiri F, Fraccaro C, Iliceto S (2016) Left anterior descending artery myocardial bridging: a clinical approach. J Am Coll Cardiol 68:2887–2899CrossRefPubMed
9.
go back to reference Wang Y, Lv B, Chen J et al (2013) Intramural coronary arterial course is associated with coronary arterial stenosis and prognosis of major cardiac events. Arterioscler Thromb Vasc Biol 33:439–444CrossRefPubMed Wang Y, Lv B, Chen J et al (2013) Intramural coronary arterial course is associated with coronary arterial stenosis and prognosis of major cardiac events. Arterioscler Thromb Vasc Biol 33:439–444CrossRefPubMed
10.
go back to reference Ishikawa Y, Akasaka Y, Suzuki K et al (2009) Anatomic properties of myocardial bridge predisposing to myocardial infarction. Circulation 120:376–383CrossRef Ishikawa Y, Akasaka Y, Suzuki K et al (2009) Anatomic properties of myocardial bridge predisposing to myocardial infarction. Circulation 120:376–383CrossRef
11.
go back to reference Leschka S, Koepfli P, Husmann L et al (2008) Myocardial bridging: depiction rate and morphology at CT coronary angiography—comparison with conventional coronary angiography. Radiology 246:754–762CrossRefPubMed Leschka S, Koepfli P, Husmann L et al (2008) Myocardial bridging: depiction rate and morphology at CT coronary angiography—comparison with conventional coronary angiography. Radiology 246:754–762CrossRefPubMed
12.
go back to reference Kim PJ, Hur G, Kim SY et al (2009) Frequency of myocardial bridges and dynamic compression of epicardial coronary arteries: a comparison between computed tomography and invasive coronary angiography. Circulation 119:1408–1416CrossRef Kim PJ, Hur G, Kim SY et al (2009) Frequency of myocardial bridges and dynamic compression of epicardial coronary arteries: a comparison between computed tomography and invasive coronary angiography. Circulation 119:1408–1416CrossRef
13.
go back to reference Konen E, Goitein O, Sternik L, Eshet Y, Shemesh J, Di Segni E (2007) The prevalence and anatomical patterns of intramuscular coronary arteries: a coronary computed tomography angiographic study. J Am Coll Cardiol 49:587–593CrossRefPubMed Konen E, Goitein O, Sternik L, Eshet Y, Shemesh J, Di Segni E (2007) The prevalence and anatomical patterns of intramuscular coronary arteries: a coronary computed tomography angiographic study. J Am Coll Cardiol 49:587–593CrossRefPubMed
14.
go back to reference Gould KL, Johnson NP (2015) Myocardial bridges: lessons in clinical coronary pathophysiology. JACC Cardiovasc Imaging 8:705–709CrossRefPubMed Gould KL, Johnson NP (2015) Myocardial bridges: lessons in clinical coronary pathophysiology. JACC Cardiovasc Imaging 8:705–709CrossRefPubMed
15.
go back to reference Tarantini G, Barioli A, Nai Fovino L et al (2018) Unmasking myocardial bridge–related ischemia by intracoronary functional evaluation. Circ Cardiovasc Interv 11:e006247CrossRefPubMed Tarantini G, Barioli A, Nai Fovino L et al (2018) Unmasking myocardial bridge–related ischemia by intracoronary functional evaluation. Circ Cardiovasc Interv 11:e006247CrossRefPubMed
16.
go back to reference Kurata A, Coenen A, Lubbers MM et al (2017) The effect of blood pressure on non-invasive fractional flow reserve derived from coronary computed tomography angiography. Eur Radiol 27:1416–1423CrossRefPubMed Kurata A, Coenen A, Lubbers MM et al (2017) The effect of blood pressure on non-invasive fractional flow reserve derived from coronary computed tomography angiography. Eur Radiol 27:1416–1423CrossRefPubMed
17.
go back to reference Lee HJ, Hong YJ, Kim HY et al (2012) Anomalous origin of the right coronary artery from the left coronary sinus with an interarterial course: subtypes and clinical importance. Radiology 262:101–108CrossRefPubMed Lee HJ, Hong YJ, Kim HY et al (2012) Anomalous origin of the right coronary artery from the left coronary sinus with an interarterial course: subtypes and clinical importance. Radiology 262:101–108CrossRefPubMed
18.
go back to reference Liu SH, Yang Q, Chen JH, Wang XM, Wang M, Liu C (2010) Myocardial bridging on dual-source computed tomography: degree of systolic compression of mural coronary artery correlating with length and depth of the myocardial bridge. Clin Imaging 34:83–88CrossRefPubMed Liu SH, Yang Q, Chen JH, Wang XM, Wang M, Liu C (2010) Myocardial bridging on dual-source computed tomography: degree of systolic compression of mural coronary artery correlating with length and depth of the myocardial bridge. Clin Imaging 34:83–88CrossRefPubMed
19.
go back to reference Zhang LJ, Wang Y, Schoepf UJ et al (2016) Image quality, radiation dose, and diagnostic accuracy of prospectively ECG-triggered high-pitch coronary CT angiography at 70 kVp in a clinical setting: comparison with invasive coronary angiography. Eur Radiol 26:797–806CrossRefPubMed Zhang LJ, Wang Y, Schoepf UJ et al (2016) Image quality, radiation dose, and diagnostic accuracy of prospectively ECG-triggered high-pitch coronary CT angiography at 70 kVp in a clinical setting: comparison with invasive coronary angiography. Eur Radiol 26:797–806CrossRefPubMed
20.
go back to reference Duguay TM, Tesche C, Vliegenthart R et al (2017) Coronary computed tomographic angiography-derived fractional flow reserve based on machine learning for risk stratification of non-culprit coronary narrowings in patients with acute coronary syndrome. Am J Cardiol 120:1260–1266CrossRefPubMed Duguay TM, Tesche C, Vliegenthart R et al (2017) Coronary computed tomographic angiography-derived fractional flow reserve based on machine learning for risk stratification of non-culprit coronary narrowings in patients with acute coronary syndrome. Am J Cardiol 120:1260–1266CrossRefPubMed
21.
go back to reference Solecki M, Kruk M, Demkow M et al (2017) What is the optimal anatomic location for coronary artery pressure measurement at CT-derived FFR? J Cardiovasc Comput Tomogr 11:397–403CrossRefPubMed Solecki M, Kruk M, Demkow M et al (2017) What is the optimal anatomic location for coronary artery pressure measurement at CT-derived FFR? J Cardiovasc Comput Tomogr 11:397–403CrossRefPubMed
22.
go back to reference Itu L, Rapaka S, Passerini T et al (2016) A machine-learning approach for computation of fractional flow reserve from coronary computed tomography. J Appl Physiol (1985) 121:42–52CrossRef Itu L, Rapaka S, Passerini T et al (2016) A machine-learning approach for computation of fractional flow reserve from coronary computed tomography. J Appl Physiol (1985) 121:42–52CrossRef
23.
go back to reference Tesche C, De Cecco CN, Baumann S et al (2018) Coronary CT angiography-derived fractional flow reserve: machine learning algorithm versus computational fluid dynamics modeling. Radiology 288:64–72CrossRefPubMed Tesche C, De Cecco CN, Baumann S et al (2018) Coronary CT angiography-derived fractional flow reserve: machine learning algorithm versus computational fluid dynamics modeling. Radiology 288:64–72CrossRefPubMed
24.
go back to reference Kruk M, Wardziak Ł, Demkow M et al (2016) Workstation-based calculation of CTA-based FFR for intermediate stenosis. JACC Cardiovasc Imaging 9:690–699CrossRefPubMed Kruk M, Wardziak Ł, Demkow M et al (2016) Workstation-based calculation of CTA-based FFR for intermediate stenosis. JACC Cardiovasc Imaging 9:690–699CrossRefPubMed
25.
go back to reference Tonino PA, De Bruyne B, Pijls NH et al (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360:213–224CrossRef Tonino PA, De Bruyne B, Pijls NH et al (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360:213–224CrossRef
26.
go back to reference Collet C, Miyazaki Y, Ryan N et al (2018) Fractional flow reserve derived from computed tomographic angiography in patients with multivessel CAD. J Am Coll Cardiol 71:2756–2769CrossRefPubMed Collet C, Miyazaki Y, Ryan N et al (2018) Fractional flow reserve derived from computed tomographic angiography in patients with multivessel CAD. J Am Coll Cardiol 71:2756–2769CrossRefPubMed
27.
go back to reference Tesche C, De Cecco CN, Albrecht MH et al (2017) Coronary CT angiography-derived fractional flow reserve. Radiology 285:17–33CrossRefPubMed Tesche C, De Cecco CN, Albrecht MH et al (2017) Coronary CT angiography-derived fractional flow reserve. Radiology 285:17–33CrossRefPubMed
28.
go back to reference DeLong ER, DeLong DM, Clarke-Pearson DL (1998) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845CrossRef DeLong ER, DeLong DM, Clarke-Pearson DL (1998) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845CrossRef
29.
go back to reference Escaned J, Cortés J, Flores A et al (2003) Importance of diastolic fractional flow reserve and dobutamine challenge in physiologic assessment of myocardial bridging. J Am Coll Cardiol 42:226–233CrossRefPubMed Escaned J, Cortés J, Flores A et al (2003) Importance of diastolic fractional flow reserve and dobutamine challenge in physiologic assessment of myocardial bridging. J Am Coll Cardiol 42:226–233CrossRefPubMed
30.
go back to reference Halliburton SS, Abbara S, Chen MY et al (2011) SCCT guidelines on radiation dose and dose optimization strategies in cardiovascular CT. J Cardiovasc Comput Tomogr 5:198–224CrossRefPubMedPubMedCentral Halliburton SS, Abbara S, Chen MY et al (2011) SCCT guidelines on radiation dose and dose optimization strategies in cardiovascular CT. J Cardiovasc Comput Tomogr 5:198–224CrossRefPubMedPubMedCentral
31.
go back to reference Agrawal H, Molossi S, Alam M et al (2017) Anomalous coronary arteries and myocardial bridges: risk stratification in children using novel cardiac catheterization techniques. Pediatr Cardiol 38:624–630CrossRefPubMed Agrawal H, Molossi S, Alam M et al (2017) Anomalous coronary arteries and myocardial bridges: risk stratification in children using novel cardiac catheterization techniques. Pediatr Cardiol 38:624–630CrossRefPubMed
32.
go back to reference Takx RAP, Celeng C, Schoepf UJ (2018) CT myocardial perfusion imaging: ready for prime time? Eur Radiol 28:1253–1256CrossRefPubMed Takx RAP, Celeng C, Schoepf UJ (2018) CT myocardial perfusion imaging: ready for prime time? Eur Radiol 28:1253–1256CrossRefPubMed
33.
go back to reference Dey D, Gaur S, Ovrehus KA et al (2018) Integrated prediction of lesion-specific ischaemia from quantitative coronary CT angiography using machine learning: a multicentre study. Eur Radiol 28:2655–2664CrossRefPubMedPubMedCentral Dey D, Gaur S, Ovrehus KA et al (2018) Integrated prediction of lesion-specific ischaemia from quantitative coronary CT angiography using machine learning: a multicentre study. Eur Radiol 28:2655–2664CrossRefPubMedPubMedCentral
Metadata
Title
Fractional flow reserve derived from CCTA may have a prognostic role in myocardial bridging
Authors
Fan Zhou
Chun Xiang Tang
U. Joseph Schoepf
Christian Tesche
Maximilian J. Bauer
Brian E. Jacobs
Chang Sheng Zhou
Jing Yan
Meng Jie Lu
Guang Ming Lu
Long Jiang Zhang
Publication date
01-06-2019
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 6/2019
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-018-5811-6

Other articles of this Issue 6/2019

European Radiology 6/2019 Go to the issue