Skip to main content
Top
Published in: European Radiology 7/2018

01-07-2018 | Paediatric

Visual grading analysis of digital neonatal chest phantom X-ray images: Impact of detector type, dose and image processing on image quality

Authors: M. H. Smet, L. Breysem, E. Mussen, H. Bosmans, N. W. Marshall, L. Cockmartin

Published in: European Radiology | Issue 7/2018

Login to get access

Abstract

Objectives

To evaluate the impact of digital detector, dose level and post-processing on neonatal chest phantom X-ray image quality (IQ).

Methods

A neonatal phantom was imaged using four different detectors: a CR powder phosphor (PIP), a CR needle phosphor (NIP) and two wireless CsI DR detectors (DXD and DRX). Five different dose levels were studied for each detector and two post-processing algorithms evaluated for each vendor. Three paediatric radiologists scored the images using European quality criteria plus additional questions on vascular lines, noise and disease simulation. Visual grading characteristics and ordinal regression statistics were used to evaluate the effect of detector type, post-processing and dose on VGA score (VGAS).

Results

No significant differences were found between the NIP, DXD and CRX detectors (p>0.05) whereas the PIP detector had significantly lower VGAS (p< 0.0001). Processing did not influence VGAS (p=0.819). Increasing dose resulted in significantly higher VGAS (p<0.0001). Visual grading analysis (VGA) identified a detector air kerma/image (DAK/image) of ~2.4 μGy as an ideal working point for NIP, DXD and DRX detectors.

Conclusions

VGAS tracked IQ differences between detectors and dose levels but not image post-processing changes. VGA showed a DAK/image value above which perceived IQ did not improve, potentially useful for commissioning.

Key points

• A VGA study detects IQ differences between detectors and dose levels.
• The NIP detector matched the VGAS of the CsI DR detectors.
• VGA data are useful in setting initial detector air kerma level.
• Differences in NNPS were consistent with changes in VGAS.
Literature
1.
go back to reference Kim TH, Ryu JH, Jeong CW et al (2017) Reduced radiation dose and improved image quality using a mini mobile digital imaging system in a neonatal intensive care unit. Clin Imaging 42:165–171CrossRefPubMed Kim TH, Ryu JH, Jeong CW et al (2017) Reduced radiation dose and improved image quality using a mini mobile digital imaging system in a neonatal intensive care unit. Clin Imaging 42:165–171CrossRefPubMed
2.
go back to reference Conradie A, Herbst CP (2016) Evaluating the effect of reduced entrance surface dose on neonatal chest imaging using subjective image quality evaluation. Phys Med 32:1368–1374CrossRefPubMed Conradie A, Herbst CP (2016) Evaluating the effect of reduced entrance surface dose on neonatal chest imaging using subjective image quality evaluation. Phys Med 32:1368–1374CrossRefPubMed
3.
go back to reference Båth M (2010) Evaluating imaging systems: practical applications. Radiat Prot Dosimetry 139:26-36 Båth M (2010) Evaluating imaging systems: practical applications. Radiat Prot Dosimetry 139:26-36
4.
go back to reference Lança L, Silva A (2009) Digital radiography detectors – A technical overview: Part 2. Radiography 15:134–138CrossRef Lança L, Silva A (2009) Digital radiography detectors – A technical overview: Part 2. Radiography 15:134–138CrossRef
5.
go back to reference Tapiovaara MJ (2008) Review of relationships between physical measurements and user evaluation of image quality. Radiat Prot Dosimetry 129:244-248 Tapiovaara MJ (2008) Review of relationships between physical measurements and user evaluation of image quality. Radiat Prot Dosimetry 129:244-248
6.
go back to reference Båth M, Månsson LG (2007) Visual grading characteristics (VGC) analysis: a non- parametric rank-invariant statistical method for image quality evaluation. Br J Radiol 80:169–176CrossRefPubMed Båth M, Månsson LG (2007) Visual grading characteristics (VGC) analysis: a non- parametric rank-invariant statistical method for image quality evaluation. Br J Radiol 80:169–176CrossRefPubMed
7.
go back to reference Zarb F, MF ME, Rainford L (2015) Visual grading characteristics and ordinal regression analysis during optimisation of CT head examinations. Insights Imaging 6:393–401CrossRefPubMed Zarb F, MF ME, Rainford L (2015) Visual grading characteristics and ordinal regression analysis during optimisation of CT head examinations. Insights Imaging 6:393–401CrossRefPubMed
8.
go back to reference Sund P, Båth M, Kheddache S, Månsson LG (2004) Comparison of visual grading analysis and determination of detective quantum efficiency for evaluating system performance in digital chest radiography. Eur Radiol 14:48-58 Sund P, Båth M, Kheddache S, Månsson LG (2004) Comparison of visual grading analysis and determination of detective quantum efficiency for evaluating system performance in digital chest radiography. Eur Radiol 14:48-58
9.
go back to reference Tesselaar E, Dahlström N, Sandborg M (2016) Clinical audit of image quality in radiology using visual grading characteristics analysis. Radiat Prot Dosimetry 169:340–346CrossRefPubMed Tesselaar E, Dahlström N, Sandborg M (2016) Clinical audit of image quality in radiology using visual grading characteristics analysis. Radiat Prot Dosimetry 169:340–346CrossRefPubMed
10.
go back to reference Sandborg M, Tingberg A, Ullman G, Dance DR, Alm Carlsson G (2006) Comparison of clinical and physical measures of image quality in chest and pelvis computed radiography at different tube voltages. Med Phys 33:4169–4175CrossRefPubMed Sandborg M, Tingberg A, Ullman G, Dance DR, Alm Carlsson G (2006) Comparison of clinical and physical measures of image quality in chest and pelvis computed radiography at different tube voltages. Med Phys 33:4169–4175CrossRefPubMed
11.
go back to reference Martin L, Ruddlesden R, Makepeace C, Robinson L, Mistry T, Starritt H (2013) Paediatric x-ray radiation dose reduction and image quality analysis. J Radiol Prot 33:621–633CrossRefPubMed Martin L, Ruddlesden R, Makepeace C, Robinson L, Mistry T, Starritt H (2013) Paediatric x-ray radiation dose reduction and image quality analysis. J Radiol Prot 33:621–633CrossRefPubMed
12.
go back to reference Shet N, Chen J, Siegel EL (2011) Continuing challenges in defining image quality. Pediatr Radiol 41:582–587CrossRefPubMed Shet N, Chen J, Siegel EL (2011) Continuing challenges in defining image quality. Pediatr Radiol 41:582–587CrossRefPubMed
13.
go back to reference Don S (2011) Pediatric digital radiography summit overview: state of confusion. Pediatr Radiol 41:567–572CrossRefPubMed Don S (2011) Pediatric digital radiography summit overview: state of confusion. Pediatr Radiol 41:567–572CrossRefPubMed
14.
go back to reference Armpilia CI, Fife IA, Croasdale PL (2002) Radiation dose quantities and risk in neonates in a special care baby unit. Br J Radiol 75:590–595CrossRefPubMed Armpilia CI, Fife IA, Croasdale PL (2002) Radiation dose quantities and risk in neonates in a special care baby unit. Br J Radiol 75:590–595CrossRefPubMed
15.
go back to reference Berrington de González A, Darby S (2004) Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet 363:345–351CrossRefPubMed Berrington de González A, Darby S (2004) Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet 363:345–351CrossRefPubMed
16.
go back to reference European Commission (1996) European guidelines on quality criteria for diagnostic radiographic images in paediatrics , Report EUR 16261EN European Commission (1996) European guidelines on quality criteria for diagnostic radiographic images in paediatrics , Report EUR 16261EN
17.
go back to reference ICRP (2013) Radiological protection in paediatric diagnostic and interventional radiology. ICRP Publication 121. Ann. ICRP 42(2) ICRP (2013) Radiological protection in paediatric diagnostic and interventional radiology. ICRP Publication 121. Ann. ICRP 42(2)
19.
go back to reference Börjesson S, Håkansson M, Båth M et al (2005) A software tool for increased efficiency in observer performance studies in radiology. Radiat Prot Dosimetry 114:45–52CrossRefPubMed Börjesson S, Håkansson M, Båth M et al (2005) A software tool for increased efficiency in observer performance studies in radiology. Radiat Prot Dosimetry 114:45–52CrossRefPubMed
20.
go back to reference Håkansson M, Svensson S, Zachrisson S, Svalkvist A, Båth M, Månsson LG (2010) Viewdex: an efficient and easy-to-use software for observer performance studies. Radiat Prot Dosimetry 139:42–51CrossRefPubMed Håkansson M, Svensson S, Zachrisson S, Svalkvist A, Båth M, Månsson LG (2010) Viewdex: an efficient and easy-to-use software for observer performance studies. Radiat Prot Dosimetry 139:42–51CrossRefPubMed
22.
go back to reference Smans K, Vandenbroucke D, Pauwels H, Struelens L, Vanhavere F, Bosmans H (2010) Validation of an image simulation technique for two computed radiography systems: an application to neonatal imaging. Med Phys 37:2092–2100CrossRefPubMed Smans K, Vandenbroucke D, Pauwels H, Struelens L, Vanhavere F, Bosmans H (2010) Validation of an image simulation technique for two computed radiography systems: an application to neonatal imaging. Med Phys 37:2092–2100CrossRefPubMed
23.
go back to reference Ludewig E, Hirsch W, Bosch B et al (2010) Assessment of clinical image quality in feline chest radiography with a needle-image plate (NIP) storage phosphor system-an approach to the evaluation of image quality in neonatal radiography. Rofo 182:122–132CrossRefPubMed Ludewig E, Hirsch W, Bosch B et al (2010) Assessment of clinical image quality in feline chest radiography with a needle-image plate (NIP) storage phosphor system-an approach to the evaluation of image quality in neonatal radiography. Rofo 182:122–132CrossRefPubMed
24.
go back to reference Cohen M, Corea D, Wanner M et al (2011) Evaluation of a new phosphor plate technology for neonatal portable chest radiographs. Acad Radiol 18:197–198CrossRefPubMed Cohen M, Corea D, Wanner M et al (2011) Evaluation of a new phosphor plate technology for neonatal portable chest radiographs. Acad Radiol 18:197–198CrossRefPubMed
25.
go back to reference Schaefer-Prokop C, Neitzel U, Venema HW, Uffmann M, Prokop M (2008) Digital chest radiography: an update on modern technology, dose containment and control of image quality. Eur Radiol 18:1818–1830CrossRefPubMedPubMedCentral Schaefer-Prokop C, Neitzel U, Venema HW, Uffmann M, Prokop M (2008) Digital chest radiography: an update on modern technology, dose containment and control of image quality. Eur Radiol 18:1818–1830CrossRefPubMedPubMedCentral
26.
go back to reference Bremicker K, Gosch D, Kahn T, Borthe G (2015) The future of bedside chest radiography: Comparative study of mobile flat-panels and needle-image plate storage phosphor systems. Med Klin Intensivmed Notfmed 110:603–608CrossRefPubMed Bremicker K, Gosch D, Kahn T, Borthe G (2015) The future of bedside chest radiography: Comparative study of mobile flat-panels and needle-image plate storage phosphor systems. Med Klin Intensivmed Notfmed 110:603–608CrossRefPubMed
27.
go back to reference Fernandez JM, Ordiales JM, Guibelalde E, Prieto C, Vano E (2008) Physical image quality comparison of four types of digital detector for chest radiology. Radiat Prot Dosimetry 129:140–143CrossRefPubMed Fernandez JM, Ordiales JM, Guibelalde E, Prieto C, Vano E (2008) Physical image quality comparison of four types of digital detector for chest radiology. Radiat Prot Dosimetry 129:140–143CrossRefPubMed
28.
29.
go back to reference Menser B, Manke D, Mentrup D, Neitzel U (2016) A Monte Carlo simulation framework for joint optimisation of image quality and patient dose in digital paediatric radiography. Radiat Prot Dosimetry 169:371–377CrossRefPubMed Menser B, Manke D, Mentrup D, Neitzel U (2016) A Monte Carlo simulation framework for joint optimisation of image quality and patient dose in digital paediatric radiography. Radiat Prot Dosimetry 169:371–377CrossRefPubMed
31.
go back to reference Bundesärztekammer (GERCY) Leitlinie der Bundesärztekammer zur Qualitätssicherung in der Röntgendiagnostik. Bundesärztekammer (GERCY) Leitlinie der Bundesärztekammer zur Qualitätssicherung in der Röntgendiagnostik.
32.
go back to reference Hart D, Wall BF, Shrimpton PC, Bungay DR, Dance DR (2000) NRPB- R318-Reference doses and patient size in paediatric radiology. NRPB-R318, NRPB, Chilton Hart D, Wall BF, Shrimpton PC, Bungay DR, Dance DR (2000) NRPB- R318-Reference doses and patient size in paediatric radiology. NRPB-R318, NRPB, Chilton
33.
go back to reference Dabin J, Struelens L, Vanhavere F (2014) Radiation dose to premature new-borns in the Belgian neonatal intensive care units. Radiat Prot Dosimetry 158:28–35CrossRefPubMed Dabin J, Struelens L, Vanhavere F (2014) Radiation dose to premature new-borns in the Belgian neonatal intensive care units. Radiat Prot Dosimetry 158:28–35CrossRefPubMed
34.
go back to reference Kiljunen T, Jårvinen H, Savolainen S (2007) Diagnostic reference levels for thorax X-ray examinations of paediatric patients. Br J Radiol 80:452–459CrossRefPubMed Kiljunen T, Jårvinen H, Savolainen S (2007) Diagnostic reference levels for thorax X-ray examinations of paediatric patients. Br J Radiol 80:452–459CrossRefPubMed
35.
go back to reference Billinger J, Nowotny R, Homolka P (2010) Diagnostic reference levels in pediatric radiology in Austria. Eur Radiol 20:1572–1579CrossRefPubMed Billinger J, Nowotny R, Homolka P (2010) Diagnostic reference levels in pediatric radiology in Austria. Eur Radiol 20:1572–1579CrossRefPubMed
36.
go back to reference Don S, MacDougall R, Strauss K et al (2013) Image gently campaign back to basics initiative: ten steps to help manage radiation dose in pediatric digital radiography. AJR Am J Roentgenol 200:W431–W436CrossRefPubMed Don S, MacDougall R, Strauss K et al (2013) Image gently campaign back to basics initiative: ten steps to help manage radiation dose in pediatric digital radiography. AJR Am J Roentgenol 200:W431–W436CrossRefPubMed
37.
go back to reference Alves AF, Alvarez M, Ribeiro SM, Duarte SB, Miranda JR, Pina DR (2016) Association between subjective evaluation and physical parameters for radiographic images optimization. Phys Med 32:123–132CrossRefPubMed Alves AF, Alvarez M, Ribeiro SM, Duarte SB, Miranda JR, Pina DR (2016) Association between subjective evaluation and physical parameters for radiographic images optimization. Phys Med 32:123–132CrossRefPubMed
38.
go back to reference Sensakovic WF, O'Dell MC, Letter H et al (2016) Image quality and dose differences caused by vendor-specific image processing of neonatal radiographs. Pediatr Radiol 46:1606–1613CrossRefPubMed Sensakovic WF, O'Dell MC, Letter H et al (2016) Image quality and dose differences caused by vendor-specific image processing of neonatal radiographs. Pediatr Radiol 46:1606–1613CrossRefPubMed
Metadata
Title
Visual grading analysis of digital neonatal chest phantom X-ray images: Impact of detector type, dose and image processing on image quality
Authors
M. H. Smet
L. Breysem
E. Mussen
H. Bosmans
N. W. Marshall
L. Cockmartin
Publication date
01-07-2018
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 7/2018
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-017-5301-2

Other articles of this Issue 7/2018

European Radiology 7/2018 Go to the issue