Skip to main content
Top
Published in: European Radiology 9/2008

Open Access 01-09-2008 | Chest

Digital chest radiography: an update on modern technology, dose containment and control of image quality

Authors: Cornelia Schaefer-Prokop, Ulrich Neitzel, Henk W. Venema, Martin Uffmann, Mathias Prokop

Published in: European Radiology | Issue 9/2008

Login to get access

Abstract

The introduction of digital radiography not only has revolutionized communication between radiologists and clinicians, but also has improved image quality and allowed for further reduction of patient exposure. However, digital radiography also poses risks, such as unnoticed increases in patient dose and suboptimum image processing that may lead to suppression of diagnostic information. Advanced processing techniques, such as temporal subtraction, dual-energy subtraction and computer-aided detection (CAD) will play an increasing role in the future and are all targeted to decrease the influence of distracting anatomic background structures and to ease the detection of focal and subtle lesions. This review summarizes the most recent technical developments with regard to new detector techniques, options for dose reduction and optimized image processing. It explains the meaning of the exposure indicator or the dose reference level as tools for the radiologist to control the dose. It also provides an overview over the multitude of studies conducted in recent years to evaluate the options of these new developments to realize the principle of ALARA. The focus of the review is hereby on adult applications, the relationship between dose and image quality and the differences between the various detector systems.
Literature
1.
go back to reference International commission on radiological protection (2004) Managing patient dose in digital radiology. ICRP publication 93 Annals of the ICRP, Elsevier, p 21 International commission on radiological protection (2004) Managing patient dose in digital radiology. ICRP publication 93 Annals of the ICRP, Elsevier, p 21
2.
go back to reference Samei E (2003) Performance of digital radiographic detectors: quantification and assessment methods. Advances in digital radiography: RSNA 2003: Categorical course in diagnostic Radiology Physics, pp 37–47 Samei E (2003) Performance of digital radiographic detectors: quantification and assessment methods. Advances in digital radiography: RSNA 2003: Categorical course in diagnostic Radiology Physics, pp 37–47
3.
go back to reference Arakawa S, Itoh W, Kohda K et al (1999) Novel computed radiography system with improved image quality by detection of emissions from both sides of an imaging plate. SPIE Medical Imaging, poster presentation Arakawa S, Itoh W, Kohda K et al (1999) Novel computed radiography system with improved image quality by detection of emissions from both sides of an imaging plate. SPIE Medical Imaging, poster presentation
4.
go back to reference Uffmann M, Prokop M, Eisenhuber E et al (2005) Computed radiography and direct radiography: Influence of acquisition dose on the detection of simulated lesions. Invest Radiol 40(5):249–56PubMedCrossRef Uffmann M, Prokop M, Eisenhuber E et al (2005) Computed radiography and direct radiography: Influence of acquisition dose on the detection of simulated lesions. Invest Radiol 40(5):249–56PubMedCrossRef
5.
go back to reference Schaetzing R, Fasbender R, Kersten P (2002) New high-speed scanning technique for computed radiography. SPIE 4682:511–520CrossRef Schaetzing R, Fasbender R, Kersten P (2002) New high-speed scanning technique for computed radiography. SPIE 4682:511–520CrossRef
6.
go back to reference Leblans P, Struye L, Willems P et al (2000) A new needle-crystalline computed radiography detector. J Digit Imaging 13(2 Suppl 1):117–120PubMedCrossRef Leblans P, Struye L, Willems P et al (2000) A new needle-crystalline computed radiography detector. J Digit Imaging 13(2 Suppl 1):117–120PubMedCrossRef
7.
go back to reference Frankenberger J, Mair S, Herrmann C et al (2005) Reflective and transmissive CR scan head technology on needle image plates. In: Flynn MJ (ed) Medical imaging. Physics of Medical Imaging 5745(1):499–510 Frankenberger J, Mair S, Herrmann C et al (2005) Reflective and transmissive CR scan head technology on needle image plates. In: Flynn MJ (ed) Medical imaging. Physics of Medical Imaging 5745(1):499–510
8.
go back to reference Koerner M, Wirth S, Treitl M et al (2005) Initial clinical results with a needle screen storage phosphor system in chest radiograms. ROEFO 177:1491–1496 Koerner M, Wirth S, Treitl M et al (2005) Initial clinical results with a needle screen storage phosphor system in chest radiograms. ROEFO 177:1491–1496
9.
go back to reference Koerner M, Treilt M, Schaetzing R et al (2006) Depiction of low contrast detail in digial radiography: comparison of powder and needle-structured stiorage phosphor systems. Invest Radiol 41(7):593–599CrossRef Koerner M, Treilt M, Schaetzing R et al (2006) Depiction of low contrast detail in digial radiography: comparison of powder and needle-structured stiorage phosphor systems. Invest Radiol 41(7):593–599CrossRef
10.
go back to reference Flynn MJ, Samei E (1999) Experimental comparison of noise and resolution for 2K and 4K storage phosphor radiography systems. Med Phys 26:1612–1623PubMedCrossRef Flynn MJ, Samei E (1999) Experimental comparison of noise and resolution for 2K and 4K storage phosphor radiography systems. Med Phys 26:1612–1623PubMedCrossRef
11.
go back to reference Samei E, Flynn MJ (2002) An experimental comparison of detector performance for computed radiography systems. Med Phys 29(4):447–459PubMedCrossRef Samei E, Flynn MJ (2002) An experimental comparison of detector performance for computed radiography systems. Med Phys 29(4):447–459PubMedCrossRef
12.
go back to reference Miro S, Leung A, Rubin G et al (2001) Digital storage phosphor chest radiography: An ROC study of the effect of 2K versus 4K matrix size on observer performance. Radiology 218:527–532PubMed Miro S, Leung A, Rubin G et al (2001) Digital storage phosphor chest radiography: An ROC study of the effect of 2K versus 4K matrix size on observer performance. Radiology 218:527–532PubMed
13.
go back to reference Koelblinger C, Prokop M, Weber M et al (2007) 2K versus 4K storage phosphor chest radiography: detection performance and image quality. Eur Radiol 17(11):2934–2940PubMedCrossRef Koelblinger C, Prokop M, Weber M et al (2007) 2K versus 4K storage phosphor chest radiography: detection performance and image quality. Eur Radiol 17(11):2934–2940PubMedCrossRef
14.
go back to reference Ueguchi T, Johkoh T, Tomiyama N et al (2005) Full-size digital storage phosphor chest radiography: effect of 4K versus 2K matrix size on observer performance in detection of subtle interstitial abnormalities. Radiat Med 23(3):170–174PubMed Ueguchi T, Johkoh T, Tomiyama N et al (2005) Full-size digital storage phosphor chest radiography: effect of 4K versus 2K matrix size on observer performance in detection of subtle interstitial abnormalities. Radiat Med 23(3):170–174PubMed
15.
go back to reference Samei E, Flynn MJ (2003) An experimental comparison of detector performance for direct and indirect digital radiography systems. Med Phys 30(4):608–622PubMedCrossRef Samei E, Flynn MJ (2003) An experimental comparison of detector performance for direct and indirect digital radiography systems. Med Phys 30(4):608–622PubMedCrossRef
16.
go back to reference Metz S, Damoser P, Hollweck R et al (2005) Chest radiography with a digital flat-panel detector: experimental receiver operating characteristic analysis. Radiology 234(3):776–784PubMedCrossRef Metz S, Damoser P, Hollweck R et al (2005) Chest radiography with a digital flat-panel detector: experimental receiver operating characteristic analysis. Radiology 234(3):776–784PubMedCrossRef
17.
go back to reference Bacher K, Smeets P, Vereecken L et al (2006) Image quality and radiation dose in digital chest imaging: comparison of an amorphous silicon and an amorphous selenium flat-panel system. AJR 187(3):630–637PubMedCrossRef Bacher K, Smeets P, Vereecken L et al (2006) Image quality and radiation dose in digital chest imaging: comparison of an amorphous silicon and an amorphous selenium flat-panel system. AJR 187(3):630–637PubMedCrossRef
18.
go back to reference Bath M, Sund P, Mansson LG (2002) Evaluation of the imaging properties of two generations of a CCD based system for digital chest radiography. Med Phys 29:2286–2297PubMedCrossRef Bath M, Sund P, Mansson LG (2002) Evaluation of the imaging properties of two generations of a CCD based system for digital chest radiography. Med Phys 29:2286–2297PubMedCrossRef
20.
go back to reference Samei E, Saunders RS, Lo JY et al (2004) Fundamental imaging characteristics of a slot scan digital chest radiographic system. Med Phys 31(9):2687–2698PubMedCrossRef Samei E, Saunders RS, Lo JY et al (2004) Fundamental imaging characteristics of a slot scan digital chest radiographic system. Med Phys 31(9):2687–2698PubMedCrossRef
21.
go back to reference Kroft LJM, Geleijns J, Mertens BJA et al (2004) Digital slot scan charge coupled device radiography versus AMBER and Bucky screen-film radiography for detection of simulated nodules and interstitial disease in a chest phantom. Radiology 231:156–163PubMedCrossRef Kroft LJM, Geleijns J, Mertens BJA et al (2004) Digital slot scan charge coupled device radiography versus AMBER and Bucky screen-film radiography for detection of simulated nodules and interstitial disease in a chest phantom. Radiology 231:156–163PubMedCrossRef
22.
go back to reference Veldkamp WJH, Kroft LJM, Boot MV et al (2006) Contrast-detail evaluation and dose assessment of eight digital chest radiography systems in clinical practice. Eur Radiol 16(2):333–341PubMedCrossRef Veldkamp WJH, Kroft LJM, Boot MV et al (2006) Contrast-detail evaluation and dose assessment of eight digital chest radiography systems in clinical practice. Eur Radiol 16(2):333–341PubMedCrossRef
23.
go back to reference Kroft LJM, Veldkamp WJH, Mertens BJA et al (2005) Comparison of eight different digital chest radiography systems: variation in detection of simulated chest disease. AJR 185:339–346PubMed Kroft LJM, Veldkamp WJH, Mertens BJA et al (2005) Comparison of eight different digital chest radiography systems: variation in detection of simulated chest disease. AJR 185:339–346PubMed
24.
go back to reference Weatherburn GC, Bryan S, Davies JG (2000) Comparison of doses for bedside examinations of the chest with conventional screen-film and computed radiography: results of a randomized controlled trial. Radiology 217:707–712PubMed Weatherburn GC, Bryan S, Davies JG (2000) Comparison of doses for bedside examinations of the chest with conventional screen-film and computed radiography: results of a randomized controlled trial. Radiology 217:707–712PubMed
25.
go back to reference Willis CE (2002) Computed radiography: a higher dose? Pediatr Radiol 32:745–750, discussion 751–4PubMedCrossRef Willis CE (2002) Computed radiography: a higher dose? Pediatr Radiol 32:745–750, discussion 751–4PubMedCrossRef
26.
go back to reference Eisenhuber E, Stadler A, Prokop M et al (2003) Detection of monitoring materials on bedside chest radiographs with the most recent generation of storage phosphor plates: dose increase does not improve detection performance. Radiology 227(1):216–221PubMedCrossRef Eisenhuber E, Stadler A, Prokop M et al (2003) Detection of monitoring materials on bedside chest radiographs with the most recent generation of storage phosphor plates: dose increase does not improve detection performance. Radiology 227(1):216–221PubMedCrossRef
27.
go back to reference Schuncke A, Neitzel U (2005) Retrospective patient dose analysis of a digital radiography system in routine clinical use. Rad Prot Dosim 114(1–3):131–134CrossRef Schuncke A, Neitzel U (2005) Retrospective patient dose analysis of a digital radiography system in routine clinical use. Rad Prot Dosim 114(1–3):131–134CrossRef
28.
go back to reference Coulibaly-Wimmer M, Prokop M, Schaefer-Prokop C (2000) Usefulness of the S-value to monitor exposure dose in digital radiography: results of a phantom study. Eur Radiol Suppl 1 to Vol 10 Number 2:264 (abstract 1108) Coulibaly-Wimmer M, Prokop M, Schaefer-Prokop C (2000) Usefulness of the S-value to monitor exposure dose in digital radiography: results of a phantom study. Eur Radiol Suppl 1 to Vol 10 Number 2:264 (abstract 1108)
29.
go back to reference Launders JH, Cowen AR (1995) A comparison of the threshold detail detectability of a screen-film combination and computed radiology under conditions relevant to high-kVp chest radiography. Phys Med Biol 40:1393–1398PubMedCrossRef Launders JH, Cowen AR (1995) A comparison of the threshold detail detectability of a screen-film combination and computed radiology under conditions relevant to high-kVp chest radiography. Phys Med Biol 40:1393–1398PubMedCrossRef
30.
go back to reference Chotas HG, Floyd CE, Dobbins JT, Ravin CE (1993) Digital chest radiography with photo-stimulable storage phosphors: signal-to-noise ratio as a function of kilo-voltage with matched exposure risk. Radiology 186:395–398PubMed Chotas HG, Floyd CE, Dobbins JT, Ravin CE (1993) Digital chest radiography with photo-stimulable storage phosphors: signal-to-noise ratio as a function of kilo-voltage with matched exposure risk. Radiology 186:395–398PubMed
31.
go back to reference Honey ID, Mackenzie A, Evans DS (2005) Investigation of optimum energies for chest imaging using film-screen and computed radiography. Br J Radiol 78(929):422–427PubMedCrossRef Honey ID, Mackenzie A, Evans DS (2005) Investigation of optimum energies for chest imaging using film-screen and computed radiography. Br J Radiol 78(929):422–427PubMedCrossRef
32.
go back to reference Uffmann M, Neitzel U, Prokop M et al (2005) Flat-panel-detector chest radiography: effect of tube voltage on image quality. Radiology 235(2):642–650PubMedCrossRef Uffmann M, Neitzel U, Prokop M et al (2005) Flat-panel-detector chest radiography: effect of tube voltage on image quality. Radiology 235(2):642–650PubMedCrossRef
33.
go back to reference Ullmann G, Sandberg M, Dance DR et al (2006) Towards opimization in digital chest radiography using Monte Carlo modeling. Phys Med Biol 51:2729–2743CrossRef Ullmann G, Sandberg M, Dance DR et al (2006) Towards opimization in digital chest radiography using Monte Carlo modeling. Phys Med Biol 51:2729–2743CrossRef
34.
go back to reference Recommendations of the International Commission on Radiological Protection (1991) ICRP Publication 60. Annals of the ICRP 21, No. 1–3 Recommendations of the International Commission on Radiological Protection (1991) ICRP Publication 60. Annals of the ICRP 21, No. 1–3
35.
go back to reference Radiological protection and safety in medicine (1996) ICRP Publication 73. Annals of the ICRP 26, No. 2 Radiological protection and safety in medicine (1996) ICRP Publication 73. Annals of the ICRP 26, No. 2
36.
go back to reference Wall BF (2004) Diagnostic reference levels in the x-ray department. Eur Radiol Syllabus 14:66–73CrossRef Wall BF (2004) Diagnostic reference levels in the x-ray department. Eur Radiol Syllabus 14:66–73CrossRef
37.
go back to reference Vano E (2005) ICRP recommendations on “managing patient dose in digital radiology”(invited paper). Radiat Prot Dos 114(1–3):126–130CrossRef Vano E (2005) ICRP recommendations on “managing patient dose in digital radiology”(invited paper). Radiat Prot Dos 114(1–3):126–130CrossRef
38.
go back to reference Busch HP, Faulkner K (2006) Image quality and dose management in digital radiography: a new paradigm for optimization. Radiat Prot Dos 117(1–3):143–147CrossRef Busch HP, Faulkner K (2006) Image quality and dose management in digital radiography: a new paradigm for optimization. Radiat Prot Dos 117(1–3):143–147CrossRef
39.
go back to reference Tack D, De Maertelaer V, Petit W et al (2005) Multi-detector row CT pulmonary angiography: comparison of standard-dose and simulated low-dose techniques. Radiology 236(1):318–25PubMedCrossRef Tack D, De Maertelaer V, Petit W et al (2005) Multi-detector row CT pulmonary angiography: comparison of standard-dose and simulated low-dose techniques. Radiology 236(1):318–25PubMedCrossRef
40.
go back to reference Bankier AA, Schaefer-Prokop C, De Maertelaer V et al (2007) Air trapping: comparison of standard-dose and simulated low-dose thin-section CT techniques. Radiology 242(3):898–906PubMedCrossRef Bankier AA, Schaefer-Prokop C, De Maertelaer V et al (2007) Air trapping: comparison of standard-dose and simulated low-dose thin-section CT techniques. Radiology 242(3):898–906PubMedCrossRef
41.
go back to reference Kroft LJ, Veldkamp WJ, Mertens BJ et al (2006) Detection of simulated nodules on clinical radiographs: dose reduction at digital postero-anterior chest radiography. Radiology 241(2):392–398PubMedCrossRef Kroft LJ, Veldkamp WJ, Mertens BJ et al (2006) Detection of simulated nodules on clinical radiographs: dose reduction at digital postero-anterior chest radiography. Radiology 241(2):392–398PubMedCrossRef
42.
go back to reference International commission on Radiological protection (2004). Managing patient dose in digital radiology. ICRP publication 93 Annals of the ICRP, Elsevier, pp 58 International commission on Radiological protection (2004). Managing patient dose in digital radiology. ICRP publication 93 Annals of the ICRP, Elsevier, pp 58
43.
go back to reference Busch HP, Busch S, Decker C, Schilz C (2003) Image quality and exposure dose in digital projection radiography (german). ROEFO 175(1):32–37 Busch HP, Busch S, Decker C, Schilz C (2003) Image quality and exposure dose in digital projection radiography (german). ROEFO 175(1):32–37
44.
go back to reference Doyle P, Martin CJ, Gentle D (2005) Dose-image quality optimization in digital chest radiography. Radiat Prot Dosimetry 114(1–3):269–272PubMedCrossRef Doyle P, Martin CJ, Gentle D (2005) Dose-image quality optimization in digital chest radiography. Radiat Prot Dosimetry 114(1–3):269–272PubMedCrossRef
45.
go back to reference Redlich U, Hoeschen C, Effenberger O et al (2005) Comparison of four digital and one conventional radiographic image systems for the chest in a patient study with subsequent system optimization. ROEFO 177(2):272–278 Redlich U, Hoeschen C, Effenberger O et al (2005) Comparison of four digital and one conventional radiographic image systems for the chest in a patient study with subsequent system optimization. ROEFO 177(2):272–278
46.
go back to reference Gruber M, Uffmann M, Weber M et al (2006) Direct detector radiography versus dual reading computed radiography: feasibility of dose reduction in chest radiography. Eur Radiol 16(7):1544–1550PubMedCrossRef Gruber M, Uffmann M, Weber M et al (2006) Direct detector radiography versus dual reading computed radiography: feasibility of dose reduction in chest radiography. Eur Radiol 16(7):1544–1550PubMedCrossRef
47.
go back to reference De Hauwere A, Bacher K, Smeets P et al (2005) Analysis of image quality in digital chest imaging. Radiat Prot Dosimetry 117(1–3):174–177PubMed De Hauwere A, Bacher K, Smeets P et al (2005) Analysis of image quality in digital chest imaging. Radiat Prot Dosimetry 117(1–3):174–177PubMed
48.
go back to reference Sund P, Bath M, Kheddache S, Mansson LG (2004) Comparison of visual grading analysis and determination of detective quantum efficiency for evaluating system performance in digital chest radiography. Eur Radiol 14(1):48–58PubMedCrossRef Sund P, Bath M, Kheddache S, Mansson LG (2004) Comparison of visual grading analysis and determination of detective quantum efficiency for evaluating system performance in digital chest radiography. Eur Radiol 14(1):48–58PubMedCrossRef
49.
go back to reference Peer S, Neitzel U, Giacomussi SM et al (2001) Comparison of low contrast detail perception on storage phosphor radiographs and digital flat panel detector images. IEEE Trans Med Imag 20:239–242CrossRef Peer S, Neitzel U, Giacomussi SM et al (2001) Comparison of low contrast detail perception on storage phosphor radiographs and digital flat panel detector images. IEEE Trans Med Imag 20:239–242CrossRef
50.
go back to reference Stahl M, Aach T, Dippel S (2000) Digital radiography enhancement by nonlinear multiscale processing. Med Phys 27:56–65PubMedCrossRef Stahl M, Aach T, Dippel S (2000) Digital radiography enhancement by nonlinear multiscale processing. Med Phys 27:56–65PubMedCrossRef
51.
go back to reference Vuylsteke P, Schoeters E (1994) Multiscale image contrast amplification (MUSICA). Proc SPIE medical imaging 2167:551–560 Vuylsteke P, Schoeters E (1994) Multiscale image contrast amplification (MUSICA). Proc SPIE medical imaging 2167:551–560
52.
go back to reference Hoeppner S, Maack I, Neitzel U, Stahl M (2002) Equalized contrast display processing for digital radiography. In: Medical imaging: visualization, image-guided procedures, and display, 4681(1):617–625 Hoeppner S, Maack I, Neitzel U, Stahl M (2002) Equalized contrast display processing for digital radiography. In: Medical imaging: visualization, image-guided procedures, and display, 4681(1):617–625
53.
go back to reference MacMahon H (2003) Dual-energy and temporal subtraction digital chest radiography. Advances in digital radiography: RSNA 2003 Categorical course in diagnostic radiology physics pp 181–188 MacMahon H (2003) Dual-energy and temporal subtraction digital chest radiography. Advances in digital radiography: RSNA 2003 Categorical course in diagnostic radiology physics pp 181–188
54.
go back to reference Kakeda S, Moriya J, Sato H et al (2004) Improved detection of lung nodules on chest radiographs using commercial computer-aided diagnosis system. AJR 182:505–510PubMed Kakeda S, Moriya J, Sato H et al (2004) Improved detection of lung nodules on chest radiographs using commercial computer-aided diagnosis system. AJR 182:505–510PubMed
55.
go back to reference Sakai S, Soeda H, Takahashi N et al (2006) Computer aided nodule detection on digital chest radiography: Validation test on consecutive T1 cases of resectable lung cancer. Journ of Digit Imag 19(4):376–382CrossRef Sakai S, Soeda H, Takahashi N et al (2006) Computer aided nodule detection on digital chest radiography: Validation test on consecutive T1 cases of resectable lung cancer. Journ of Digit Imag 19(4):376–382CrossRef
56.
go back to reference Kobayashi T, Xu XW, MacMahon H et al (1996) Effect of a computer-aided diagnosis scheme on radiologists performance in detection of lung nodules on radiographs. Radiology 199:843–848PubMed Kobayashi T, Xu XW, MacMahon H et al (1996) Effect of a computer-aided diagnosis scheme on radiologists performance in detection of lung nodules on radiographs. Radiology 199:843–848PubMed
57.
go back to reference Freedman MT, Lo SCP, Osicka T et al (2002) Computer aided detection of lung cancer on chest radiographs: effect of machine CAD false positive locations on radiologists behaviors. Proc SPIE 4684:1311–1319CrossRef Freedman MT, Lo SCP, Osicka T et al (2002) Computer aided detection of lung cancer on chest radiographs: effect of machine CAD false positive locations on radiologists behaviors. Proc SPIE 4684:1311–1319CrossRef
58.
go back to reference MacMahon H (2000) Improvement in detection of pulmonary nodules: digital image processing and computer-aided diagnosis. Radiographics 20(4):1169–1177PubMed MacMahon H (2000) Improvement in detection of pulmonary nodules: digital image processing and computer-aided diagnosis. Radiographics 20(4):1169–1177PubMed
59.
go back to reference Gilkeson RC, Sachs PB (2006) Dual energy subtraction digital radiography: technical considerations, clinical applications, and imaging pitfalls (review). J Thorac Imag 21(4):303–313CrossRef Gilkeson RC, Sachs PB (2006) Dual energy subtraction digital radiography: technical considerations, clinical applications, and imaging pitfalls (review). J Thorac Imag 21(4):303–313CrossRef
60.
go back to reference Uemura M, Miyagawa M, Yasuhara Y et al (2005) Clinical evaluation of pulmonary nodules with dual-exposure dual-energy subtraction chest radiography. Radiat Med 23(6):391–397PubMed Uemura M, Miyagawa M, Yasuhara Y et al (2005) Clinical evaluation of pulmonary nodules with dual-exposure dual-energy subtraction chest radiography. Radiat Med 23(6):391–397PubMed
61.
go back to reference Tsubamoto M, Johkoh T, Kozuka T et al (2002) Temporal subtraction for the detection of hazy pulmonary opacities on chest radiography. AJR 179:467–471PubMed Tsubamoto M, Johkoh T, Kozuka T et al (2002) Temporal subtraction for the detection of hazy pulmonary opacities on chest radiography. AJR 179:467–471PubMed
62.
go back to reference Johkoh T, Kozuka T, Tomiyama N et al (2002) Temporal subtraction for detection of solitary pulmonary nodules on chest radiographs: evaluation of a commercially available computer-aided diagnosis system. Radiology 223:806–811PubMedCrossRef Johkoh T, Kozuka T, Tomiyama N et al (2002) Temporal subtraction for detection of solitary pulmonary nodules on chest radiographs: evaluation of a commercially available computer-aided diagnosis system. Radiology 223:806–811PubMedCrossRef
63.
go back to reference Armato SG, Doshi DJ, Engelmann R et al (2006) Temporal subtration of dual-energy chest radiographs. Med Phys 33(6):1911–1919PubMedCrossRef Armato SG, Doshi DJ, Engelmann R et al (2006) Temporal subtration of dual-energy chest radiographs. Med Phys 33(6):1911–1919PubMedCrossRef
64.
go back to reference Dobbins JT, Godfrey DJ, McAdams HP (2003) Chest tomosynthesis. Syllabus RSNA 2003, Advances in digital radiography: RSNA categorical course in diagnostic radiology physics 211–217 Dobbins JT, Godfrey DJ, McAdams HP (2003) Chest tomosynthesis. Syllabus RSNA 2003, Advances in digital radiography: RSNA categorical course in diagnostic radiology physics 211–217
Metadata
Title
Digital chest radiography: an update on modern technology, dose containment and control of image quality
Authors
Cornelia Schaefer-Prokop
Ulrich Neitzel
Henk W. Venema
Martin Uffmann
Mathias Prokop
Publication date
01-09-2008
Publisher
Springer-Verlag
Published in
European Radiology / Issue 9/2008
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-008-0948-3

Other articles of this Issue 9/2008

European Radiology 9/2008 Go to the issue