Skip to main content
Top
Published in: European Radiology 8/2017

01-08-2017 | Neuro

Amide proton transfer imaging to discriminate between low- and high-grade gliomas: added value to apparent diffusion coefficient and relative cerebral blood volume

Authors: Yoon Seong Choi, Sung Soo Ahn, Seung-Koo Lee, Jong Hee Chang, Seok-Gu Kang, Se Hoon Kim, Jinyuan Zhou

Published in: European Radiology | Issue 8/2017

Login to get access

Abstract

Objectives

To evaluate the added value of amide proton transfer (APT) imaging to the apparent diffusion coefficient (ADC) from diffusion tensor imaging (DTI) and the relative cerebral blood volume (rCBV) from perfusion magnetic resonance imaging (MRI) for discriminating between high- and low-grade gliomas.

Methods

Forty-six consecutive adult patients with diffuse gliomas who underwent preoperative APT imaging, DTI and perfusion MRI were enrolled. APT signals were compared according to the World Health Organization grade. The diagnostic ability and added value of the APT signal to the ADC and rCBV for discriminating between low- and high-grade gliomas were evaluated using receiver operating characteristic (ROC) analyses and integrated discrimination improvement.

Results

The APT signal increased as the glioma grade increased. The discrimination abilities of the APT, ADC and rCBV values were not significantly different. Using both the APT signal and ADC significantly improved discrimination vs. the ADC alone (area under the ROC curve [AUC], 0.888 vs. 0.910; P = 0.007), whereas using both the APT signal and rCBV did not improve discrimination vs. the rCBV alone (AUC, 0.927 vs. 0.923; P = 0.222).

Conclusions

APT imaging may be a useful imaging biomarker that adds value to the ADC for discriminating between low- and high-grade gliomas.

Key points

Higher APT values were correlated with higher glioma grades.
Adding the APT signal to the ADC improved glioma grading.
Adding the APT signal to rCBV did not improve glioma grading.
APT is a useful adjunct to the ADC for glioma grading.
Appendix
Available only for authorised users
Literature
1.
go back to reference Clarke J, Butowski N, Chang S (2010) Recent advances in therapy for glioblastoma. Arch Neurol 67:279–283CrossRefPubMed Clarke J, Butowski N, Chang S (2010) Recent advances in therapy for glioblastoma. Arch Neurol 67:279–283CrossRefPubMed
2.
go back to reference Bulakbasi N, Guvenc I, Onguru O et al (2004) The added value of the apparent diffusion coefficient calculation to magnetic resonance imaging in the differentiation and grading of malignant brain tumors. J Comput Assist Tomogr 28:735–746CrossRefPubMed Bulakbasi N, Guvenc I, Onguru O et al (2004) The added value of the apparent diffusion coefficient calculation to magnetic resonance imaging in the differentiation and grading of malignant brain tumors. J Comput Assist Tomogr 28:735–746CrossRefPubMed
3.
go back to reference Sugahara T, Korogi Y, Kochi M et al (1998) Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR Am J Roentgenol 171:1479–1486CrossRefPubMed Sugahara T, Korogi Y, Kochi M et al (1998) Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR Am J Roentgenol 171:1479–1486CrossRefPubMed
4.
go back to reference Shin JH, Lee HK, Kwun BD et al (2002) Using relative cerebral blood flow and volume to evaluate the histopathologic grade of cerebral gliomas: preliminary results. Am J Roentgenol 179:783–789CrossRef Shin JH, Lee HK, Kwun BD et al (2002) Using relative cerebral blood flow and volume to evaluate the histopathologic grade of cerebral gliomas: preliminary results. Am J Roentgenol 179:783–789CrossRef
5.
go back to reference Aronen HJ, Gazit IE, Louis DN et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191:41–51CrossRefPubMed Aronen HJ, Gazit IE, Louis DN et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191:41–51CrossRefPubMed
6.
go back to reference Ahn SS, Shin N-Y, Chang JH et al (2014) Prediction of methylguanine methyltransferase promoter methylation in glioblastoma using dynamic contrast-enhanced magnetic resonance and diffusion tensor imaging. J Neurosurg 121:367–373CrossRefPubMed Ahn SS, Shin N-Y, Chang JH et al (2014) Prediction of methylguanine methyltransferase promoter methylation in glioblastoma using dynamic contrast-enhanced magnetic resonance and diffusion tensor imaging. J Neurosurg 121:367–373CrossRefPubMed
7.
go back to reference Sunwoo L, Choi SH, Park C-K et al (2013) Correlation of apparent diffusion coefficient values measured by diffusion MRI and MGMT promoter methylation semiquantitatively analyzed with MS-MLPA in patients with glioblastoma multiforme. J Magn Reson Imaging 37:351–358CrossRefPubMed Sunwoo L, Choi SH, Park C-K et al (2013) Correlation of apparent diffusion coefficient values measured by diffusion MRI and MGMT promoter methylation semiquantitatively analyzed with MS-MLPA in patients with glioblastoma multiforme. J Magn Reson Imaging 37:351–358CrossRefPubMed
8.
go back to reference Pope WB, Lai A, Mehta R et al (2011) Apparent diffusion coefficient histogram analysis stratifies progression-free survival in newly diagnosed bevacizumab-treated glioblastoma. Am J Neuroradiol 32:882–889CrossRefPubMed Pope WB, Lai A, Mehta R et al (2011) Apparent diffusion coefficient histogram analysis stratifies progression-free survival in newly diagnosed bevacizumab-treated glioblastoma. Am J Neuroradiol 32:882–889CrossRefPubMed
9.
go back to reference Romano A, Calabria LF, Tavanti F et al (2013) Apparent diffusion coefficient obtained by magnetic resonance imaging as a prognostic marker in glioblastomas: correlation with MGMT promoter methylation status. Eur Radiol 23:513–520CrossRefPubMed Romano A, Calabria LF, Tavanti F et al (2013) Apparent diffusion coefficient obtained by magnetic resonance imaging as a prognostic marker in glioblastomas: correlation with MGMT promoter methylation status. Eur Radiol 23:513–520CrossRefPubMed
12.
go back to reference Ward KM, Aletras AH, Balaban RS (2000) A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 143:79–87CrossRefPubMed Ward KM, Aletras AH, Balaban RS (2000) A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 143:79–87CrossRefPubMed
13.
go back to reference Zhou J, Lal B, Wilson DA et al (2003) Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med 50:1120–1126CrossRefPubMed Zhou J, Lal B, Wilson DA et al (2003) Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med 50:1120–1126CrossRefPubMed
14.
go back to reference Zhou J, Payen J-F, Wilson DA et al (2003) Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med 9:1085–1090CrossRefPubMed Zhou J, Payen J-F, Wilson DA et al (2003) Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med 9:1085–1090CrossRefPubMed
15.
16.
go back to reference Kim M, Gillen J, Landman BA et al (2009) Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments. Magn Reson Med 61:1441–1450CrossRefPubMedPubMedCentral Kim M, Gillen J, Landman BA et al (2009) Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments. Magn Reson Med 61:1441–1450CrossRefPubMedPubMedCentral
17.
go back to reference DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 837–845 DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 837–845
18.
go back to reference Pencina MJ, D’Agostino RB, D’Agostino RB, Vasan RS (2008) Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 27:157CrossRefPubMed Pencina MJ, D’Agostino RB, D’Agostino RB, Vasan RS (2008) Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 27:157CrossRefPubMed
19.
go back to reference Zhou J, Tryggestad E, Wen Z et al (2011) Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med 17:130–134CrossRefPubMed Zhou J, Tryggestad E, Wen Z et al (2011) Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med 17:130–134CrossRefPubMed
20.
go back to reference Sagiyama K, Mashimo T, Togao O et al (2014) In vivo chemical exchange saturation transfer imaging allows early detection of a therapeutic response in glioblastoma. Proc Natl Acad Sci 111:4542–4547CrossRefPubMedPubMedCentral Sagiyama K, Mashimo T, Togao O et al (2014) In vivo chemical exchange saturation transfer imaging allows early detection of a therapeutic response in glioblastoma. Proc Natl Acad Sci 111:4542–4547CrossRefPubMedPubMedCentral
21.
go back to reference Togao O, Yoshiura T, Keupp J et al (2014) Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro-Oncology 16:441–448CrossRefPubMed Togao O, Yoshiura T, Keupp J et al (2014) Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro-Oncology 16:441–448CrossRefPubMed
22.
go back to reference Park JE, Kim HS, Park KJ et al (2015) Histogram analysis of amide proton transfer imaging to identify contrast-enhancing low-grade brain tumor that mimics high-grade tumor: increased accuracy of MR perfusion. Radiology 277:151–161CrossRefPubMed Park JE, Kim HS, Park KJ et al (2015) Histogram analysis of amide proton transfer imaging to identify contrast-enhancing low-grade brain tumor that mimics high-grade tumor: increased accuracy of MR perfusion. Radiology 277:151–161CrossRefPubMed
23.
go back to reference Sun PZ, Benner T, Kumar A, Sorensen AG (2008) Investigation of optimizing and translating pH-sensitive pulsed-chemical exchange saturation transfer (CEST) imaging to a 3T clinical scanner. Magn Reson Med 60:834–841CrossRefPubMed Sun PZ, Benner T, Kumar A, Sorensen AG (2008) Investigation of optimizing and translating pH-sensitive pulsed-chemical exchange saturation transfer (CEST) imaging to a 3T clinical scanner. Magn Reson Med 60:834–841CrossRefPubMed
24.
go back to reference Jones CK, Huang A, Xu J et al (2013) Nuclear Overhauser enhancement (NOE) imaging in the human brain at 7 T. NeuroImage 77:114–124CrossRefPubMed Jones CK, Huang A, Xu J et al (2013) Nuclear Overhauser enhancement (NOE) imaging in the human brain at 7 T. NeuroImage 77:114–124CrossRefPubMed
25.
go back to reference McVicar N, Li AX, Gonçalves DF et al (2014) Quantitative tissue pH measurement during cerebral ischemia using amine and amide concentration-independent detection (AACID) with MRI. J Cereb Blood Flow Metab 34:690–698CrossRefPubMedPubMedCentral McVicar N, Li AX, Gonçalves DF et al (2014) Quantitative tissue pH measurement during cerebral ischemia using amine and amide concentration-independent detection (AACID) with MRI. J Cereb Blood Flow Metab 34:690–698CrossRefPubMedPubMedCentral
26.
go back to reference Zhao X, Wen Z, Huang F et al (2011) Saturation power dependence of amide proton transfer image contrasts in human brain tumors and strokes at 3 T. Magn Reson Med 66:1033–1041CrossRefPubMedPubMedCentral Zhao X, Wen Z, Huang F et al (2011) Saturation power dependence of amide proton transfer image contrasts in human brain tumors and strokes at 3 T. Magn Reson Med 66:1033–1041CrossRefPubMedPubMedCentral
27.
28.
go back to reference Howe FA, Barton SJ, Cudlip SA et al (2003) Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 49:223–232CrossRefPubMed Howe FA, Barton SJ, Cudlip SA et al (2003) Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 49:223–232CrossRefPubMed
29.
30.
go back to reference Herholz K, Hölzer T, Bauer B et al (1998) 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 50:1316–1322CrossRefPubMed Herholz K, Hölzer T, Bauer B et al (1998) 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 50:1316–1322CrossRefPubMed
31.
go back to reference Pöpperl G, Kreth FW, Mehrkens JH et al (2007) FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging 34:1933–1942CrossRefPubMed Pöpperl G, Kreth FW, Mehrkens JH et al (2007) FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging 34:1933–1942CrossRefPubMed
32.
go back to reference Sakata A, Okada T, Yamamoto A et al (2015) Grading glial tumors with amide proton transfer MR imaging: different analytical approaches. J Neuro-Oncol 122:339–348CrossRef Sakata A, Okada T, Yamamoto A et al (2015) Grading glial tumors with amide proton transfer MR imaging: different analytical approaches. J Neuro-Oncol 122:339–348CrossRef
33.
go back to reference Ahn SJ, Shin HJ, Chang J-H, Lee S-K (2014) Differentiation between primary cerebral lymphoma and glioblastoma using the apparent diffusion coefficient: comparison of three different ROI methods. PLoS One 9, e112948CrossRefPubMedPubMedCentral Ahn SJ, Shin HJ, Chang J-H, Lee S-K (2014) Differentiation between primary cerebral lymphoma and glioblastoma using the apparent diffusion coefficient: comparison of three different ROI methods. PLoS One 9, e112948CrossRefPubMedPubMedCentral
Metadata
Title
Amide proton transfer imaging to discriminate between low- and high-grade gliomas: added value to apparent diffusion coefficient and relative cerebral blood volume
Authors
Yoon Seong Choi
Sung Soo Ahn
Seung-Koo Lee
Jong Hee Chang
Seok-Gu Kang
Se Hoon Kim
Jinyuan Zhou
Publication date
01-08-2017
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 8/2017
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-017-4732-0

Other articles of this Issue 8/2017

European Radiology 8/2017 Go to the issue