Skip to main content
Top
Published in: European Radiology 1/2017

01-01-2017 | Molecular Imaging

Quantitative imaging of excised osteoarthritic cartilage using spectral CT

Authors: Kishore Rajendran, Caroline Löbker, Benjamin S. Schon, Christopher J. Bateman, Raja Aamir Younis, Niels J. A. de Ruiter, Alex I. Chernoglazov, Mohsen Ramyar, Gary J. Hooper, Anthony P. H. Butler, Tim B. F. Woodfield, Nigel G. Anderson

Published in: European Radiology | Issue 1/2017

Login to get access

Abstract

Objectives

To quantify iodine uptake in articular cartilage as a marker of glycosaminoglycan (GAG) content using multi-energy spectral CT.

Methods

We incubated a 25-mm strip of excised osteoarthritic human tibial plateau in 50 % ionic iodine contrast and imaged it using a small-animal spectral scanner with a cadmium telluride photon-processing detector to quantify the iodine through the thickness of the articular cartilage. We imaged both spectroscopic phantoms and osteoarthritic tibial plateau samples. The iodine distribution as an inverse marker of GAG content was presented in the form of 2D and 3D images after applying a basis material decomposition technique to separate iodine in cartilage from bone. We compared this result with a histological section stained for GAG.

Results

The iodine in cartilage could be distinguished from subchondral bone and quantified using multi-energy CT. The articular cartilage showed variation in iodine concentration throughout its thickness which appeared to be inversely related to GAG distribution observed in histological sections.

Conclusions

Multi-energy CT can quantify ionic iodine contrast (as a marker of GAG content) within articular cartilage and distinguish it from bone by exploiting the energy-specific attenuation profiles of the associated materials.

Key points

Contrast-enhanced articular cartilage and subchondral bone can be distinguished using multi-energy CT.
Iodine as a marker of glycosaminoglycan content is quantifiable with multi-energy CT.
Multi-energy CT could track alterations in GAG content occurring in osteoarthritis.
Literature
1.
go back to reference Oei EH, van Tiel J, Robinson WH, Gold GE (2014) Quantitative radiologic imaging techniques for articular cartilage composition: toward early diagnosis and development of disease-modifying therapeutics for osteoarthritis. Arthritis Care Res 66:1129–1141CrossRef Oei EH, van Tiel J, Robinson WH, Gold GE (2014) Quantitative radiologic imaging techniques for articular cartilage composition: toward early diagnosis and development of disease-modifying therapeutics for osteoarthritis. Arthritis Care Res 66:1129–1141CrossRef
2.
3.
go back to reference Palmer AW, Guldberg RE, Levenston ME (2006) Analysis of cartilage matrix fixed charge density and three-dimensional morphology via contrast-enhanced microcomputed tomography. Proc Natl Acad Sci U S A 103:19255–19260CrossRefPubMedPubMedCentral Palmer AW, Guldberg RE, Levenston ME (2006) Analysis of cartilage matrix fixed charge density and three-dimensional morphology via contrast-enhanced microcomputed tomography. Proc Natl Acad Sci U S A 103:19255–19260CrossRefPubMedPubMedCentral
4.
go back to reference Martel-Pelletier J, Boileau C, Pelletier J-P, Roughley PJ (2008) Cartilage in normal and osteoarthritis conditions. Best Pract Res Clin Rheumatol 22:351–384CrossRefPubMed Martel-Pelletier J, Boileau C, Pelletier J-P, Roughley PJ (2008) Cartilage in normal and osteoarthritis conditions. Best Pract Res Clin Rheumatol 22:351–384CrossRefPubMed
5.
go back to reference Benders KE, Malda J, Saris DB, Dhert WJ, Steck R et al (2010) Formalin fixation affects equilibrium partitioning of an ionic contrast agent-microcomputed tomography (EPIC-muCT) imaging of osteochondral samples. Osteoarthr Cartil 18:1586–1591CrossRefPubMed Benders KE, Malda J, Saris DB, Dhert WJ, Steck R et al (2010) Formalin fixation affects equilibrium partitioning of an ionic contrast agent-microcomputed tomography (EPIC-muCT) imaging of osteochondral samples. Osteoarthr Cartil 18:1586–1591CrossRefPubMed
6.
go back to reference Farndale RW, Buttle DJ, Barrett AJ (1986) Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 883:173–177CrossRefPubMed Farndale RW, Buttle DJ, Barrett AJ (1986) Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 883:173–177CrossRefPubMed
7.
go back to reference Taylor C, Carballido-Gamio J, Majumdar S, Li X (2009) Comparison of quantitative imaging of cartilage for osteoarthritis: T2, T1rho, dGEMRIC and contrast-enhanced computed tomography. Magn Reson Imaging 27:779–784CrossRefPubMedPubMedCentral Taylor C, Carballido-Gamio J, Majumdar S, Li X (2009) Comparison of quantitative imaging of cartilage for osteoarthritis: T2, T1rho, dGEMRIC and contrast-enhanced computed tomography. Magn Reson Imaging 27:779–784CrossRefPubMedPubMedCentral
8.
go back to reference Matzat SJ, Kogan F, Fong GW, Gold GE (2014) Imaging strategies for assessing cartilage composition in osteoarthritis. Curr Rheumatol Rep 16:1–9CrossRef Matzat SJ, Kogan F, Fong GW, Gold GE (2014) Imaging strategies for assessing cartilage composition in osteoarthritis. Curr Rheumatol Rep 16:1–9CrossRef
10.
go back to reference Xie L, Lin AS, Levenston ME, Guldberg RE (2009) Quantitative assessment of articular cartilage morphology via EPIC-microCT. Osteoarthr Cartil 17:313–320CrossRefPubMed Xie L, Lin AS, Levenston ME, Guldberg RE (2009) Quantitative assessment of articular cartilage morphology via EPIC-microCT. Osteoarthr Cartil 17:313–320CrossRefPubMed
11.
go back to reference Silvast TS, Kokkonen HT, Jurvelin JS, Quinn TM, Nieminen MT, Toyras J (2009) Diffusion and near equilibrium distribution of MRI and CT contrast agents in articular cartilage. Phys Med Biol 54:6823–6836CrossRefPubMed Silvast TS, Kokkonen HT, Jurvelin JS, Quinn TM, Nieminen MT, Toyras J (2009) Diffusion and near equilibrium distribution of MRI and CT contrast agents in articular cartilage. Phys Med Biol 54:6823–6836CrossRefPubMed
13.
go back to reference Anderson NG, Butler AP (2014) Clinical applications of spectral molecular imaging: potential and challenges. Contrast Media Mol imaging 9:3–12CrossRefPubMed Anderson NG, Butler AP (2014) Clinical applications of spectral molecular imaging: potential and challenges. Contrast Media Mol imaging 9:3–12CrossRefPubMed
14.
go back to reference Anderson NG, Butler AP, Scott NJ, Cook NJ, Butzer JS et al (2010) Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE. Eur Radiol 20:2126–2134CrossRefPubMed Anderson NG, Butler AP, Scott NJ, Cook NJ, Butzer JS et al (2010) Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE. Eur Radiol 20:2126–2134CrossRefPubMed
15.
go back to reference Ronaldson JP, Zainon R, Scott N, Gieseg SP, Butler AP, Butler PH et al (2012) Towards quantifying the composition of soft-tissues by spectral CT with Medipix3. Med Phys 39:6847–6857CrossRefPubMed Ronaldson JP, Zainon R, Scott N, Gieseg SP, Butler AP, Butler PH et al (2012) Towards quantifying the composition of soft-tissues by spectral CT with Medipix3. Med Phys 39:6847–6857CrossRefPubMed
16.
go back to reference Ballabriga R, Alozy J, Blaj G, Campbell M, Fiederle M et al (2013) The Medipix3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging. J Inst 8:C02016CrossRef Ballabriga R, Alozy J, Blaj G, Campbell M, Fiederle M et al (2013) The Medipix3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging. J Inst 8:C02016CrossRef
17.
go back to reference Panta RK, Walsh M, Bell S, Anderson N, Butler A, Butler P (2014) Energy calibration of the pixels of spectral x-ray detectors. IEEE Trans Med Imaging 34:697–706CrossRefPubMed Panta RK, Walsh M, Bell S, Anderson N, Butler A, Butler P (2014) Energy calibration of the pixels of spectral x-ray detectors. IEEE Trans Med Imaging 34:697–706CrossRefPubMed
18.
go back to reference Burghardt AJ, Kazakia GJ, Laib A, Majumdar S (2008) Quantitative assessment of bone tissue mineralization with polychromatic micro-computed tomography. Calcif Tissue Int 83:129–138CrossRefPubMedPubMedCentral Burghardt AJ, Kazakia GJ, Laib A, Majumdar S (2008) Quantitative assessment of bone tissue mineralization with polychromatic micro-computed tomography. Calcif Tissue Int 83:129–138CrossRefPubMedPubMedCentral
19.
go back to reference Bateman CJ, Rajendran K, de Ruiter NJ, Butler AP, Butler PH, Renaud PF (2015) The hidden K-edge signal in K-edge imaging. arXiv preprint arXiv:150604223 Bateman CJ, Rajendran K, de Ruiter NJ, Butler AP, Butler PH, Renaud PF (2015) The hidden K-edge signal in K-edge imaging. arXiv preprint arXiv:150604223
20.
go back to reference Schon BS, Schrobback K, van der Ven M, Stroebel S, Hooper GJ, Woodfield TBF (2012) Validation of a high-throughput microtissue fabrication process for 3D assembly of tissue engineered cartilage constructs. Cell Tissue Res 347:629–642CrossRef Schon BS, Schrobback K, van der Ven M, Stroebel S, Hooper GJ, Woodfield TBF (2012) Validation of a high-throughput microtissue fabrication process for 3D assembly of tissue engineered cartilage constructs. Cell Tissue Res 347:629–642CrossRef
21.
go back to reference Tang ND, de Ruiter N, Mohr J, Butler AP, Butler PH, Aamir R (2012) Using algebraic reconstruction in computed tomography. Proceedings of the 27th conference on image and vision computing New Zealand, ACM, Dunedin, pp 216–221 Tang ND, de Ruiter N, Mohr J, Butler AP, Butler PH, Aamir R (2012) Using algebraic reconstruction in computed tomography. Proceedings of the 27th conference on image and vision computing New Zealand, ACM, Dunedin, pp 216–221
22.
go back to reference Andersen AH, Kak AC (1984) Simultaneous algebraic reconstruction technique (SART): a superior implementation of the art algorithm. Ultrason Imaging 6:81–94CrossRefPubMed Andersen AH, Kak AC (1984) Simultaneous algebraic reconstruction technique (SART): a superior implementation of the art algorithm. Ultrason Imaging 6:81–94CrossRefPubMed
23.
go back to reference Leng S, Yu L, Wang J, Fletcher JG, Mistretta CA, McCollough CH (2011) Noise reduction in spectral CT: reducing dose and breaking the trade-off between image noise and energy bin selection. Med Phys 38:4946–4957CrossRefPubMed Leng S, Yu L, Wang J, Fletcher JG, Mistretta CA, McCollough CH (2011) Noise reduction in spectral CT: reducing dose and breaking the trade-off between image noise and energy bin selection. Med Phys 38:4946–4957CrossRefPubMed
24.
go back to reference Palmer AJ, Brown CP, McNally EG, Price AJ, Tracey I et al (2013) Non-invasive imaging of cartilage in early osteoarthritis. Bone Joint J 95-B:738–746CrossRefPubMed Palmer AJ, Brown CP, McNally EG, Price AJ, Tracey I et al (2013) Non-invasive imaging of cartilage in early osteoarthritis. Bone Joint J 95-B:738–746CrossRefPubMed
26.
go back to reference Trattnig S, Millington SA, Szomolanyi P, Marlovits S (2007) MR imaging of osteochondral grafts and autologous chondrocyte implantation. Eur Radiol 17:103–118CrossRefPubMed Trattnig S, Millington SA, Szomolanyi P, Marlovits S (2007) MR imaging of osteochondral grafts and autologous chondrocyte implantation. Eur Radiol 17:103–118CrossRefPubMed
27.
go back to reference Lu XL, Mow VC (2008) Biomechanics of articular cartilage and determination of material properties. Med Sci Sports Exerc 40:193–199CrossRefPubMed Lu XL, Mow VC (2008) Biomechanics of articular cartilage and determination of material properties. Med Sci Sports Exerc 40:193–199CrossRefPubMed
28.
go back to reference Rajendran K, Walsh M, de Ruiter N, Chernaglazov A, Panta R et al (2014) Reducing beam hardening effects and metal artifacts using Medipix3RX: with applications from biomaterial science. J Inst 9:P03015CrossRef Rajendran K, Walsh M, de Ruiter N, Chernaglazov A, Panta R et al (2014) Reducing beam hardening effects and metal artifacts using Medipix3RX: with applications from biomaterial science. J Inst 9:P03015CrossRef
29.
go back to reference Nicolaou S, Liang T, Murphy DT, Korzan JR, Ouellette H, Munk P (2012) Dual-energy CT: a promising new technique for assessment of the musculoskeletal system. AJR Am J Roentgenol 199:S78–S86CrossRefPubMed Nicolaou S, Liang T, Murphy DT, Korzan JR, Ouellette H, Munk P (2012) Dual-energy CT: a promising new technique for assessment of the musculoskeletal system. AJR Am J Roentgenol 199:S78–S86CrossRefPubMed
30.
go back to reference Stewart RC, Bansal PN, Entezari V, Lusic H, Nazarian RM et al (2013) Contrast-enhanced CT with a high-affinity cationic contrast agent for imaging ex vivo bovine, intact ex vivo rabbit, and in vivo rabbit cartilage. Radiology 266:141–150CrossRefPubMedPubMedCentral Stewart RC, Bansal PN, Entezari V, Lusic H, Nazarian RM et al (2013) Contrast-enhanced CT with a high-affinity cationic contrast agent for imaging ex vivo bovine, intact ex vivo rabbit, and in vivo rabbit cartilage. Radiology 266:141–150CrossRefPubMedPubMedCentral
Metadata
Title
Quantitative imaging of excised osteoarthritic cartilage using spectral CT
Authors
Kishore Rajendran
Caroline Löbker
Benjamin S. Schon
Christopher J. Bateman
Raja Aamir Younis
Niels J. A. de Ruiter
Alex I. Chernoglazov
Mohsen Ramyar
Gary J. Hooper
Anthony P. H. Butler
Tim B. F. Woodfield
Nigel G. Anderson
Publication date
01-01-2017
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 1/2017
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-016-4374-7

Other articles of this Issue 1/2017

European Radiology 1/2017 Go to the issue